Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Including LGBM parameters to lgbm_classification_learner #211

Merged
merged 5 commits into from
Oct 19, 2022
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 61 additions & 6 deletions src/fklearn/training/classification.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
from typing import List, Any
from typing import List, Any, Optional, Callable, Tuple, Union

import numpy as np
import pandas as pd
from lightgbm import Booster
from pathlib import Path
from toolz import curry, merge, assoc
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
Expand Down Expand Up @@ -501,10 +503,22 @@ def lgbm_classification_learner(df: pd.DataFrame,
target: str,
learning_rate: float = 0.1,
num_estimators: int = 100,
extra_params: LogType = None,
extra_params: Optional[LogType] = None,
prediction_column: str = "prediction",
weight_column: str = None,
encode_extra_cols: bool = True) -> LearnerReturnType:
weight_column: Optional[str] = None,
encode_extra_cols: bool = True,
valid_sets: Optional[List[pd.DataFrame]] = None,
valid_names: Optional[List[str]] = None,
feval: Optional[Union[
Callable[[np.ndarray, pd.DataFrame], Tuple[str, float, bool]],
List[Callable[[np.ndarray, pd.DataFrame], Tuple[str, float, bool]]]]] = None,
init_model: Optional[Union[str, Path, Booster]] = None,
feature_name: Union[List[str], str] = 'auto',
categorical_feature: Union[List[str], List[int], str] = 'auto',
keep_training_booster: bool = False,
callbacks: Optional[List[Callable]] = None,
dataset_init_score: Optional[Union[
List, List[List], np.array, pd.Series, pd.DataFrame]] = None) -> LearnerReturnType:
"""
Fits an LGBM classifier to the dataset.

Expand Down Expand Up @@ -557,6 +571,44 @@ def lgbm_classification_learner(df: pd.DataFrame,

encode_extra_cols : bool (default: True)
If True, treats all columns in `df` with name pattern fklearn_feat__col==val` as feature columns.

valid_sets :
GiulioCMSanto marked this conversation as resolved.
Show resolved Hide resolved

valid_names :
GiulioCMSanto marked this conversation as resolved.
Show resolved Hide resolved

feval : callable, list of callable, or None, optional (default=None)
Customized evaluation function. Each evaluation function should accept two parameters: preds, eval_data, and
return (eval_name, eval_result, is_higher_better) or list of such tuples.

init_model : str, pathlib.Path, Booster or None, optional (default=None)
Filename of LightGBM model or Booster instance used for continue training.

feature_name : list of str, or 'auto', optional (default="auto")
Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.

categorical_feature : list of str or int, or 'auto', optional (default="auto")
Categorical features. If list of int, interpreted as indices. If list of str, interpreted as feature names (need
to specify feature_name as well). If ‘auto’ and data is pandas DataFrame, pandas unordered categorical columns
are used. All values in categorical features will be cast to int32 and thus should be less than int32 max value
(2147483647). Large values could be memory consuming. Consider using consecutive integers starting from zero.
All negative values in categorical features will be treated as missing values. The output cannot be
monotonically constrained with respect to a categorical feature. Floating point numbers in categorical features
will be rounded towards 0.

keep_training_booster : bool, optional (default=False)
Whether the returned Booster will be used to keep training. If False, the returned value will be converted into
_InnerPredictor before returning. This means you won’t be able to use eval, eval_train or eval_valid methods of
the returned Booster. When your model is very large and cause the memory error, you can try to set this param to
True to avoid the model conversion performed during the internal call of model_to_string. You can still use
_InnerPredictor as init_model for future continue training.

callbacks : list of callable, or None, optional (default=None)
List of callback functions that are applied at each iteration. See Callbacks in LightGBM Python API for more
information.

dataset_init_score : list, list of lists (for multi-class task), numpy array, pandas Series, pandas DataFrame (for
multi-class task), or None, optional (default=None)
Init score for Dataset. It could be the prediction of the majority class or a prediction from any other model.
"""

import lightgbm as lgbm
Expand All @@ -570,9 +622,12 @@ def lgbm_classification_learner(df: pd.DataFrame,
features = features if not encode_extra_cols else expand_features_encoded(df, features)

dtrain = lgbm.Dataset(df[features].values, label=df[target], feature_name=list(map(str, features)), weight=weights,
silent=True)
silent=True, init_score=dataset_init_score)

bst = lgbm.train(params, dtrain, num_estimators)
bst = lgbm.train(params=params, train_set=dtrain, num_boost_round=num_estimators, valid_sets=valid_sets,
valid_names=valid_names, feval=feval, init_model=init_model, feature_name=feature_name,
categorical_feature=categorical_feature, keep_training_booster=keep_training_booster,
callbacks=callbacks)

def p(new_df: pd.DataFrame, apply_shap: bool = False) -> pd.DataFrame:
if params["objective"] == "multiclass":
Expand Down
89 changes: 89 additions & 0 deletions tests/training/test_classification.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,15 @@
# -*- coding: utf-8 -*-
from collections import Counter

import lightgbm
import numpy as np
import pandas as pd

from fklearn.training.classification import \
logistic_classification_learner, xgb_classification_learner, \
nlp_logistic_classification_learner, lgbm_classification_learner, \
catboost_classification_learner
from unittest.mock import MagicMock, patch, Mock


def test_logistic_classification_learner():
Expand Down Expand Up @@ -482,3 +484,90 @@ def test_lgbm_classification_learner():
["shap_expected_value_0", "shap_expected_value_1", "shap_expected_value_2"]
assert Counter(expected_col_shap) == Counter(pred_shap_multinomial.columns.tolist())
assert np.vstack(pred_shap_multinomial["shap_values_0"]).shape == (6, 2)


def test_lgbm_classification_learner_params():
# Test input parameters

df = pd.DataFrame(
{"feat1": [1, 2, 1, 1, 1, 0],
"feat2": [0.1, 0.5, 0.2, 0.5, 0.0, 0.1],
"target": [1, 0, 1, 1, 0, 0]
}
)

features = ["feat1", "feat2"]
target = "target"

df_result = pd.DataFrame(
{"feat1": [1, 2, 1, 1, 1, 0],
"feat2": [0.1, 0.5, 0.2, 0.5, 0.0, 0.1],
"target": [1, 0, 1, 1, 0, 0],
"prediction": [0.9, 0.0, 1.0, 1.0, 0.0, 0.0],
}
)

lgbm_dataset = lightgbm.Dataset(df[features].values, label=df[target], silent=True)

mock_lgbm = MagicMock()
mock_lgbm.predict.return_value = df_result["prediction"]
mock_lgbm.Dataset.return_value = lgbm_dataset
mock_lgbm.train.return_value = mock_lgbm

mock_lgbm.__version__ = Mock(return_value='1.0')

with patch.dict("sys.modules", lightgbm=mock_lgbm):
# default settings
lgbm_classification_learner(df=df,
features=["feat1", "feat2"],
target="target",
learning_rate=0.1,
num_estimators=100
)

mock_lgbm.train.assert_called()
mock_lgbm.train.assert_called_with(
params={'eta': 0.1, 'objective': 'binary'},
train_set=lgbm_dataset,
num_boost_round=100,
valid_sets=None,
valid_names=None,
feval=None,
init_model=None,
feature_name='auto',
categorical_feature='auto',
keep_training_booster=False,
callbacks=None
)

# Non default value for keep training booster
lgbm_classification_learner(
df=df,
features=["feat1", "feat2"],
target="target",
learning_rate=0.1,
num_estimators=100,
valid_sets=None,
valid_names=None,
feval=None,
init_model=None,
feature_name='auto',
categorical_feature='auto',
keep_training_booster=True,
callbacks=None,
dataset_init_score=None
)

mock_lgbm.train.assert_called_with(
params={'eta': 0.1, 'objective': 'binary'},
train_set=lgbm_dataset,
num_boost_round=100,
valid_sets=None,
valid_names=None,
feval=None,
init_model=None,
feature_name='auto',
categorical_feature='auto',
keep_training_booster=True,
callbacks=None
)
2 changes: 1 addition & 1 deletion tests/validation/test_evaluators.py
Original file line number Diff line number Diff line change
Expand Up @@ -469,7 +469,7 @@ def test_exponential_coefficient_evaluator():

result = exponential_coefficient_evaluator(predictions)

assert result['exponential_coefficient_evaluator__target'] == a1
assert result['exponential_coefficient_evaluator__target'] == pytest.approx(a1)


def test_logistic_coefficient_evaluator():
Expand Down