Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Training Stability: Patch HF Hub and Datasets methods and update datasets.py #280

Merged
merged 5 commits into from
Feb 11, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions ultravox/data/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
"VoiceDataset",
"VoiceDatasetArgs",
"VoiceSample",
"DatasetOptions",
"create_dataset",
"register_datasets",
]
10 changes: 7 additions & 3 deletions ultravox/data/configs/librispeech.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,11 +13,12 @@
subset="clean",
splits=[
types.DatasetSplitConfig(
name="train.100", num_samples=28_539, split_type=types.DatasetSplit.TRAIN
name="train.100", num_samples=28_539, split=types.DatasetSplit.TRAIN
),
types.DatasetSplitConfig(
name="train.360", num_samples=104_014, split_type=types.DatasetSplit.TRAIN
name="train.360", num_samples=104_014, split=types.DatasetSplit.TRAIN
),
types.DatasetSplitConfig(name="test", num_samples=2620),
],
)

Expand All @@ -27,21 +28,24 @@
subset="other",
splits=[
types.DatasetSplitConfig(
name="train.500", num_samples=148_688, split_type=types.DatasetSplit.TRAIN
name="train.500", num_samples=148_688, split=types.DatasetSplit.TRAIN
),
types.DatasetSplitConfig(name="test", num_samples=2939),
],
)

LS_CLEAN_TRANS_CONFIG = types.DatasetConfig(
name="librispeech-clean-transcription",
base="librispeech-clean",
user_template=types.TRANSCRIPTION_USER_TEMPLATE,
eval_config=types.EvalConfig(metric="wer", args={"lang_id": "en"}),
)

LS_OTHER_TRANS_CONFIG = types.DatasetConfig(
name="librispeech-other-transcription",
base="librispeech-other",
user_template=types.TRANSCRIPTION_USER_TEMPLATE,
eval_config=types.EvalConfig(metric="wer", args={"lang_id": "en"}),
)

LS_CLEAN_CONT_CONFIG = types.DatasetConfig(
Expand Down
3 changes: 2 additions & 1 deletion ultravox/data/configs/peoplespeech.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
splits=[
types.DatasetSplitConfig(name="train", num_samples=1_501_271),
types.DatasetSplitConfig(
name="test", num_samples=34_898, split_type=types.DatasetSplit.VALIDATION
name="test", num_samples=34_898, split=types.DatasetSplit.VALIDATION
),
],
assistant_template="{{text_proc.format_asr_text(text)}}",
Expand All @@ -18,6 +18,7 @@
name="peoplespeech-clean-transcription",
base="peoplespeech",
user_template=types.TRANSCRIPTION_USER_TEMPLATE,
eval_config=types.EvalConfig(metric="wer", args={"lang_id": "en"}),
)

PS_CONT_CONFIG = types.DatasetConfig(
Expand Down
153 changes: 120 additions & 33 deletions ultravox/data/datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,16 @@ class SizedIterableDataset(abc.ABC, data.IterableDataset):
"""

@abc.abstractmethod
def __len__(self):
def __len__(self) -> int:
pass

@abc.abstractmethod
def __str__(self) -> str:
pass

@property
@abc.abstractmethod
def name(self) -> str:
pass


Expand All @@ -111,14 +120,27 @@ def __init__(self, args: types.VoiceDatasetArgs) -> None:
super().__init__()
self._args = args
self._rng = np.random.default_rng(self._args.shuffle_seed)
self._name = "[unset]"
self._length = -1

def _init_dataset(self, dataset: data.Dataset, num_samples: int) -> None:
# num_samples is the total number of samples in the dataset
def _init_dataset(
self,
dataset: data.Dataset,
name: str,
num_samples: int,
) -> None:
self._dataset = dataset
self._name = name
self._length = num_samples

def __len__(self):
return self._length

@property
def name(self):
return self._name

def _load_hf_dataset(
self,
path: str,
Expand Down Expand Up @@ -172,40 +194,39 @@ def _load_mds_dataset(

def __iter__(self):
actual_length = 0
for _, row in enumerate(self._dataset):
skipped_samples = 0
bad_samples = 0
dataset_iter = iter(self._dataset)
for row in dataset_iter:
actual_length += 1
sample = self._get_sample(row)
if sample is None:
raise ValueError(
f"Sample is None in dataset {self._config.alias} for row {row}"
)
print(f"Sample is None in dataset {self._config.alias} for row {row}")
bad_samples += 1
continue # Skip this sample and proceed to the next

if self._args.include_audio:
# If audio_field is set, make sure the sample has audio data.
if sample.audio is None:
raise ValueError(f"Audio is None for sample {sample}")
print(f"Audio is None for sample {sample}")
bad_samples += 1
continue # Skip this sample
if sample.audio.shape[-1] == 0:
raise ValueError(f"Audio length is 0 for sample {sample}")
print(f"Audio length is 0 for sample {sample}")
bad_samples += 1
continue # Skip this sample
if (
self._args.max_audio_duration_secs is not None
and sample.audio.shape[-1] / data_sample.SAMPLE_RATE
> self._args.max_audio_duration_secs
):
duration = sample.audio.shape[-1] / data_sample.SAMPLE_RATE
warnings.warn(
f"Audio length ({duration}s) exceeds max audio duration ({self._args.max_audio_duration_secs}s), skipping sample."
)
continue
skipped_samples += 1
continue # Skip this sample

yield sample
actual_length += 1
if actual_length == len(self) + 1:
warnings.warn(
f"The presumed length {self._length} has been exceeded for {self._config.name}:{self._args.split.value}. Make sure to update."
)
if actual_length != len(self):
warnings.warn(
f"Mismatch between presumed length ({self._length}) and actual length ({actual_length}) for {self._config.name}:{self._args.split.value}. Make sure to update."
)

logging.info(
f"Extracted {actual_length} samples from {self.name} (total: {len(self)}), removed {bad_samples} bad samples, and skipped {skipped_samples} samples for exceeding max audio duration ({self._args.max_audio_duration_secs}s)."
)

@abc.abstractmethod
def _get_sample(
Expand Down Expand Up @@ -262,7 +283,7 @@ def __init__(
dsets = []
total_samples = 0
for split in config.splits:
if split.split_type == self._args.split:
if split.split == self._args.split:
if not config.use_mds:
ds = self._load_hf_dataset(
config.path,
Expand All @@ -283,7 +304,13 @@ def __init__(
len(dsets) > 0
), f"The {config.name} dataset has no {self._args.split} splits."
dataset = ds if len(dsets) == 1 else hf_datasets.concatenate_datasets(dsets)
super()._init_dataset(dataset, total_samples)

dataset_name = f"{config.name}.{self._args.split.value}"

super()._init_dataset(dataset, dataset_name, total_samples)

def __str__(self):
return f"GenericDataset({self._config})"

def _get_sample(self, row) -> Optional[data_sample.VoiceSample]:
assert self._config.user_template is not None
Expand All @@ -296,15 +323,14 @@ def _get_sample(self, row) -> Optional[data_sample.VoiceSample]:
).render(
**row,
text_proc=text_proc,
dataset=self,
**self._config.user_template_args,
)
assistant_content = jinja2.Template(
self._config.assistant_template, undefined=jinja2.StrictUndefined
).render(**row, text_proc=text_proc, dataset=self)
).render(**row, text_proc=text_proc)
transcript = jinja2.Template(
self._config.transcript_template, undefined=jinja2.StrictUndefined
).render(**row, text_proc=text_proc, dataset=self)
).render(**row, text_proc=text_proc)
except jinja2.TemplateError as e:
print(f"Error rendering template: {e}")
print(f"user_template: {self._config.user_template}")
Expand All @@ -322,18 +348,34 @@ def _get_sample(self, row) -> Optional[data_sample.VoiceSample]:
audio = self._get_audio(row, self._config.audio_field)
return self._make_sample(messages, audio, audio_transcript=transcript)

def get_config(self):
return self._config


class LibriSpeechDummyDataset(VoiceDataset):
class LibriSpeechDummyDataset(GenericDataset):
def __init__(self, args: types.VoiceDatasetArgs) -> None:
super().__init__(args)
VoiceDataset.__init__(self, args)
# This dataset doesn't support streaming.
dataset = self._load_hf_dataset(
"hf-internal-testing/librispeech_asr_dummy",
"clean",
split="validation",
streaming=False,
)
self._init_dataset(dataset, 73)
self._init_dataset(dataset, "dummy", 73)

def __str__(self):
return "LibriSpeechDummyDataset"

@property
def name(self):
return "dummy"

def get_config(self):
return types.DatasetConfig(
name="dummy",
path="hf-internal-testing/librispeech_asr_dummy",
)

def _get_sample(
self, row: transformers.BatchFeature
Expand All @@ -360,6 +402,13 @@ def __iter__(self):
def __len__(self):
return self._length

def __str__(self):
return f"EmptyDataset(length={self._length})"

@property
def name(self):
return "empty"


class InterleaveDataset(SizedIterableDataset):
"""Interleaves multiple SizedIterableDataset objects based on normalized weights."""
Expand All @@ -380,6 +429,7 @@ def __init__(
assert len(weights) == len(datasets)
else:
weights = [1.0] * len(datasets)
self._weights = weights
self._weighted_samples = [int(w * len(d)) for w, d in zip(weights, datasets)]
self._total_samples = sum(self._weighted_samples)

Expand All @@ -398,12 +448,25 @@ def __iter__(self):
yield next(ds_iters[iter_index])
except StopIteration:
ds_iters[iter_index] = iter(self._datasets[iter_index])
yield next(ds_iters[iter_index])
try:
yield next(ds_iters[iter_index])
except StopIteration:
warnings.warn(
f"Dataset {iter_index} is empty. num_workers is likely too high. Stopping iteration."
)
break
ds_pos[iter_index] += 1

def __len__(self):
return self._total_samples

def __str__(self):
return "+".join([f"{d}:{w:.2f}" for w, d in zip(self._weights, self._datasets)])

@property
def name(self):
return "+".join([ds.name for ds in self._datasets])


class Dataproc(SizedIterableDataset):
"""Base class to preprocess a dataset of VoiceSamples."""
Expand All @@ -421,6 +484,13 @@ def __iter__(self):
def __len__(self):
return len(self._dataset)

def __str__(self):
return f"Dataproc({self._dataset})"

@property
def name(self):
return self._dataset.name


class Range(SizedIterableDataset):
"""Limits the number of samples from another dataset."""
Expand All @@ -431,13 +501,30 @@ def __init__(
self._dataset = dataset
self._length = num_samples or len(dataset)
if self._length > len(dataset):
raise ValueError("num_samples exceeds dataset length.")
warnings.warn(
f"num_samples ({self._length}) exceeds dataset length ({len(dataset)}). Truncating to {len(dataset)}."
)
self._length = len(dataset)
self._name = f"{dataset.name}.{self._length}"

def __iter__(self):
for i, sample in enumerate(self._dataset):
if i >= self._length:
break
yield sample

def __str__(self):
return f"Range({self._dataset}%{len(self)})"

def __len__(self):
return self._length

@property
def name(self):
return self._name

def get_config(self):
if isinstance(self._dataset, GenericDataset):
return self._dataset.get_config()
else:
raise ValueError("Cannot get config for non-GenericDataset")
Loading