Gymnasium environments for the Search Race CodinGame optimization puzzle and Mad Pod Racing CodinGame bot programming game.
search_race_v2_demo.mp4
| Action Space | Box([-1, 0], [1, 1], float64) |
| Observation Space | Box(-1, 1, shape=(10,), float64) |
| import | gymnasium.make("gymnasium_search_race:gymnasium_search_race/SearchRace-v3") |
To install gymnasium-search-race with pip, execute:
pip install gymnasium_search_raceFrom source:
git clone https://github.com/Quentin18/gymnasium-search-race
cd gymnasium-search-race/
pip install -e .The action is a ndarray with 2 continuous variables:
- The rotation angle between -18 and 18 degrees, normalized between -1 and 1.
- The thrust between 0 and 200, normalized between 0 and 1.
The observation is a ndarray of 10 continuous variables:
- The relative x and y coordinates of the next two checkpoints in the car's frame.
- The sine and cosine of the relative angle to the next two checkpoints in the car's frame.
- The longitudinal and lateral speed in the car's frame.
The values are normalized between -1 and 1.
- +1 when a checkpoint is visited.
- 0 otherwise.
The starting state is generated by choosing a random CodinGame test case.
The episode ends if either of the following happens:
- Termination: The car visit all checkpoints before the time is out.
- Truncation: Episode length is greater than 600.
laps: number of laps. The default value is3.car_max_thrust: maximum thrust. The default value is200.test_id: test case id to generate the checkpoints (see choices here). The default value isNonewhich selects a test case randomly when theresetmethod is called.sequential_maps: ifTrue, the maps are generated sequentially. The default value isFalse.
import gymnasium as gym
gym.make(
"gymnasium_search_race:gymnasium_search_race/SearchRace-v3",
laps=3,
car_max_thrust=200,
test_id=1,
sequential_maps=False,
)- v3: Update observation with relative positions and angles in car's frame
- v2: Update observation with relative positions and angles
- v1: Add boolean to indicate if the next checkpoint is the last checkpoint in observation
- v0: Initial version
The SearchRaceDiscrete environment is similar to the SearchRace environment except the action space is discrete.
import gymnasium as gym
gym.make(
"gymnasium_search_race:gymnasium_search_race/SearchRaceDiscrete-v3",
laps=3,
car_max_thrust=200,
test_id=1,
sequential_maps=False,
)There are 74 discrete actions corresponding to the combinations of angles from -18 to 18 degrees and thrust 0 and 200.
- v3: Update observation with relative positions and angles in car's frame
- v2: Update observation with relative positions and angles
- v1: Add all angles in action space
- v0: Initial version
The MadPodRacing and MadPodRacingDiscrete environments can be used to train a runner for
the Mad Pod Racing CodinGame bot programming game.
They are similar to the SearchRace and SearchRaceDiscrete environments except the following differences:
- The maps are generated the same way Codingame generates them.
- The car position is rounded and not truncated.
import gymnasium as gym
gym.make("gymnasium_search_race:gymnasium_search_race/MadPodRacing-v2")
gym.make("gymnasium_search_race:gymnasium_search_race/MadPodRacingDiscrete-v2")mad_pod_racing_v1_demo.mp4
The MadPodRacingBlocker and MadPodRacingBlockerDiscrete environments can be used to train a blocker for
the Mad Pod Racing CodinGame bot programming game.
import gymnasium as gym
gym.make("gymnasium_search_race:gymnasium_search_race/MadPodRacingBlocker-v2")
gym.make("gymnasium_search_race:gymnasium_search_race/MadPodRacingBlockerDiscrete-v2")mad_pod_racing_blocker_v1_demo.mp4
opponent_path: path to the opponent PPO model. The default value isNonewhich means there is no opponent.boost_on_first_move: ifTrue, the car is boosted on the first move. The default value isFalse.boost_opponent_on_first_move: ifTrue, the opponent is boosted on the first move. The default value isFalse.
- v2: Update observation with relative positions and angles in car's frame and add boost options
- v1: Update observation with relative positions and angles and update maximum thrust
- v0: Initial version
You can use RL Baselines3 Zoo to train and evaluate agents:
pip install rl_zoo3The hyperparameters are defined in hyperparams/ppo.yml.
To train a PPO agent for the Search Race game, execute:
python -m rl_zoo3.train \
--algo ppo \
--env gymnasium_search_race/SearchRaceDiscrete-v3 \
--tensorboard-log logs \
--eval-freq 20000 \
--eval-episodes 50 \
--gym-packages gymnasium_search_race \
--env-kwargs "laps:1000" "sequential_maps:True" \
--conf-file hyperparams/ppo.yml \
--progressImportant
The agent is evaluated once per test case with --eval-episodes 50 and --env-kwargs "sequential_maps:True" (there
are 50 different test cases).
For the Mad Pod Racing game, you can add an opponent with the opponent_path argument:
python -m rl_zoo3.train \
--algo ppo \
--env gymnasium_search_race/MadPodRacingBlockerDiscrete-v2 \
--tensorboard-log logs \
--eval-freq 20000 \
--eval-episodes 52 \
--gym-packages gymnasium_search_race \
--env-kwargs \
"opponent_path:'rl-trained-agents/ppo/gymnasium_search_race-MadPodRacingDiscrete-v2_1/best_model.zip'" \
"laps:1000" \
"sequential_maps:True" \
"boost_opponent_on_first_move:True" \
--conf-file hyperparams/ppo.yml \
--progressImportant
The agent is evaluated four times per test case with --eval-episodes 52 and
--env-kwargs "sequential_maps:True" (there are 13 different test cases).
To see a trained agent in action on random test cases, execute:
python -m rl_zoo3.enjoy \
--algo ppo \
--env gymnasium_search_race/SearchRaceDiscrete-v3 \
--n-timesteps 1000 \
--deterministic \
--gym-packages gymnasium_search_race \
--load-best \
--progressTo run test cases with a trained agent, execute:
python -m scripts.run_test_cases \
--path rl-trained-agents/ppo/gymnasium_search_race-SearchRaceDiscrete-v3_1/best_model.zip \
--env gymnasium_search_race:gymnasium_search_race/SearchRaceDiscrete-v3 \
--record-video \
--record-metricsTo record a video of a trained agent on Mad Pod Racing, execute:
python -m scripts.record_video \
--path rl-trained-agents/ppo/gymnasium_search_race-MadPodRacingDiscrete-v2_1/best_model.zip \
--env gymnasium_search_race:gymnasium_search_race/MadPodRacingDiscrete-v2For Mad Pod Racing Blocker, execute:
python -m scripts.record_video \
--path rl-trained-agents/ppo/gymnasium_search_race-MadPodRacingBlockerDiscrete-v2_1/best_model.zip \
--opponent-path rl-trained-agents/ppo/gymnasium_search_race-MadPodRacingDiscrete-v2_1/best_model.zip \
--env gymnasium_search_race:gymnasium_search_race/MadPodRacingBlockerDiscrete-v2To run tests, execute:
pytestTo cite the repository in publications:
@misc{gymnasium-search-race,
author = {Quentin Deschamps},
title = {Gymnasium Search Race},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/Quentin18/gymnasium-search-race}},
}- Gymnasium
- RL Baselines3 Zoo
- Stable Baselines3
- CGSearchRace
- CSB-Runner-Arena
- Coders Strikes Back by Magus