-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Your Name
committed
Sep 7, 2024
1 parent
4ce54be
commit 562c948
Showing
2 changed files
with
36 additions
and
231 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,239 +1,44 @@ | ||
<!--- | ||
Copyright 2022 - The HuggingFace Team. All rights reserved. | ||
[200~### 介绍 | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
--> | ||
|
||
<p align="center"> | ||
<br> | ||
<img src="https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/en/imgs/diffusers_library.jpg" width="400"/> | ||
<br> | ||
<p> | ||
<p align="center"> | ||
<a href="https://github.com/huggingface/diffusers/blob/main/LICENSE"><img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue"></a> | ||
<a href="https://github.com/huggingface/diffusers/releases"><img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg"></a> | ||
<a href="https://pepy.tech/project/diffusers"><img alt="GitHub release" src="https://static.pepy.tech/badge/diffusers/month"></a> | ||
<a href="CODE_OF_CONDUCT.md"><img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg"></a> | ||
<a href="https://twitter.com/diffuserslib"><img alt="X account" src="https://img.shields.io/twitter/url/https/twitter.com/diffuserslib.svg?style=social&label=Follow%20%40diffuserslib"></a> | ||
</p> | ||
|
||
🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, 🤗 Diffusers is a modular toolbox that supports both. Our library is designed with a focus on [usability over performance](https://huggingface.co/docs/diffusers/conceptual/philosophy#usability-over-performance), [simple over easy](https://huggingface.co/docs/diffusers/conceptual/philosophy#simple-over-easy), and [customizability over abstractions](https://huggingface.co/docs/diffusers/conceptual/philosophy#tweakable-contributorfriendly-over-abstraction). | ||
|
||
🤗 Diffusers offers three core components: | ||
|
||
- State-of-the-art [diffusion pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) that can be run in inference with just a few lines of code. | ||
- Interchangeable noise [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview) for different diffusion speeds and output quality. | ||
- Pretrained [models](https://huggingface.co/docs/diffusers/api/models/overview) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems. | ||
|
||
## Installation | ||
|
||
We recommend installing 🤗 Diffusers in a virtual environment from PyPI or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/#installation), please refer to their official documentation. | ||
|
||
### PyTorch | ||
|
||
With `pip` (official package): | ||
|
||
```bash | ||
pip install --upgrade diffusers[torch] | ||
``` | ||
|
||
With `conda` (maintained by the community): | ||
|
||
```sh | ||
conda install -c conda-forge diffusers | ||
``` | ||
|
||
### Flax | ||
|
||
With `pip` (official package): | ||
|
||
```bash | ||
pip install --upgrade diffusers[flax] | ||
``` | ||
|
||
### Apple Silicon (M1/M2) support | ||
|
||
Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggingface.co/docs/diffusers/optimization/mps) guide. | ||
|
||
## Quickstart | ||
|
||
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 30,000+ checkpoints): | ||
|
||
```python | ||
from diffusers import DiffusionPipeline | ||
import torch | ||
|
||
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) | ||
pipeline.to("cuda") | ||
pipeline("An image of a squirrel in Picasso style").images[0] | ||
``` | ||
|
||
You can also dig into the models and schedulers toolbox to build your own diffusion system: | ||
本项目主要是介绍如何结合 flux 和 controlnet 进行 inpaint,以童装场景为示例。更多详细的介绍请参考:[yishaoai/tutorials-of-100-wonderful-ai-models](https://github.com/yishaoai/tutorials-of-100-wonderful-ai-models/)的第三节。 | ||
|
||
本项目的使用方法如下: | ||
```python | ||
from diffusers import DDPMScheduler, UNet2DModel | ||
from PIL import Image | ||
import torch | ||
|
||
scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256") | ||
model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda") | ||
scheduler.set_timesteps(50) | ||
|
||
sample_size = model.config.sample_size | ||
noise = torch.randn((1, 3, sample_size, sample_size), device="cuda") | ||
input = noise | ||
|
||
for t in scheduler.timesteps: | ||
with torch.no_grad(): | ||
noisy_residual = model(input, t).sample | ||
prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample | ||
input = prev_noisy_sample | ||
|
||
image = (input / 2 + 0.5).clamp(0, 1) | ||
image = image.cpu().permute(0, 2, 3, 1).numpy()[0] | ||
image = Image.fromarray((image * 255).round().astype("uint8")) | ||
image | ||
from diffusers.utils import load_image | ||
from diffusers.pipelines.flux.pipeline_flux_controlnet_inpaint import FluxControlNetInpaintPipeline | ||
from diffusers.models.controlnet_flux import FluxControlNetModel | ||
from controlnet_aux import CannyDetector | ||
|
||
base_model = 'black-forest-labs/FLUX.1-dev' | ||
controlnet_model = 'YishaoAI/flux-dev-controlnet-canny-kid-clothes' | ||
|
||
pipe = FluxControlNetInpaintPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) | ||
pipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power | ||
pipe.to("cuda") | ||
|
||
image = load_image(image_path) | ||
mask = load_image(mask_path) | ||
canny = CannyDetector() | ||
canny_image = canny(image) | ||
|
||
image_res = pipe( | ||
prompt, | ||
image=image, | ||
control_image=canny_image, | ||
controlnet_conditioning_scale=0.5, | ||
mask_image=mask, | ||
strength=0.95, | ||
num_inference_steps=50, | ||
guidance_scale=5, | ||
generator=generator, | ||
joint_attention_kwargs={"scale": 0.8}, | ||
).images[0] | ||
``` | ||
|
||
Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to launch your diffusion journey today! | ||
|
||
## How to navigate the documentation | ||
|
||
| **Documentation** | **What can I learn?** | | ||
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ||
| [Tutorial](https://huggingface.co/docs/diffusers/tutorials/tutorial_overview) | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. | | ||
| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading_overview) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. | | ||
| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/pipeline_overview) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. | | ||
| [Optimization](https://huggingface.co/docs/diffusers/optimization/opt_overview) | Guides for how to optimize your diffusion model to run faster and consume less memory. | | ||
| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. | | ||
## Contribution | ||
|
||
We ❤️ contributions from the open-source community! | ||
If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md). | ||
You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library. | ||
- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute | ||
- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines | ||
- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22) | ||
### 结果示例 | ||
以下示例图是以童装场景为例,会把衣服部分保持不变,将人像和背景基于提示词进行重绘。因为用到controlnet,所以这些图像的边缘会相似。基于需要controlnet的权重可以进行调整,权重越大,生成图像的边缘信息保留越多,权重越小,边缘信息保留越少。 | ||
inpaint方法适合对爆款产品进行复刻,十分适合电商领域的买家秀和种草的用户需求。同时,也可以给商家朋友提供服装模特的主图。 | ||
|
||
Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or just hang out ☕. | ||
![demo](https://github.com/yishaoai/flux-controlnet-inpaint/assets/flux-controlnet-inpaint.png) | ||
|
||
|
||
## Popular Tasks & Pipelines | ||
|
||
<table> | ||
<tr> | ||
<th>Task</th> | ||
<th>Pipeline</th> | ||
<th>🤗 Hub</th> | ||
</tr> | ||
<tr style="border-top: 2px solid black"> | ||
<td>Unconditional Image Generation</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/ddpm"> DDPM </a></td> | ||
<td><a href="https://huggingface.co/google/ddpm-ema-church-256"> google/ddpm-ema-church-256 </a></td> | ||
</tr> | ||
<tr style="border-top: 2px solid black"> | ||
<td>Text-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img">Stable Diffusion Text-to-Image</a></td> | ||
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td> | ||
</tr> | ||
<tr> | ||
<td>Text-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/unclip">unCLIP</a></td> | ||
<td><a href="https://huggingface.co/kakaobrain/karlo-v1-alpha"> kakaobrain/karlo-v1-alpha </a></td> | ||
</tr> | ||
<tr> | ||
<td>Text-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/deepfloyd_if">DeepFloyd IF</a></td> | ||
<td><a href="https://huggingface.co/DeepFloyd/IF-I-XL-v1.0"> DeepFloyd/IF-I-XL-v1.0 </a></td> | ||
</tr> | ||
<tr> | ||
<td>Text-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/kandinsky">Kandinsky</a></td> | ||
<td><a href="https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder"> kandinsky-community/kandinsky-2-2-decoder </a></td> | ||
</tr> | ||
<tr style="border-top: 2px solid black"> | ||
<td>Text-guided Image-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/controlnet">ControlNet</a></td> | ||
<td><a href="https://huggingface.co/lllyasviel/sd-controlnet-canny"> lllyasviel/sd-controlnet-canny </a></td> | ||
</tr> | ||
<tr> | ||
<td>Text-guided Image-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/pix2pix">InstructPix2Pix</a></td> | ||
<td><a href="https://huggingface.co/timbrooks/instruct-pix2pix"> timbrooks/instruct-pix2pix </a></td> | ||
</tr> | ||
<tr> | ||
<td>Text-guided Image-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img">Stable Diffusion Image-to-Image</a></td> | ||
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td> | ||
</tr> | ||
<tr style="border-top: 2px solid black"> | ||
<td>Text-guided Image Inpainting</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpainting</a></td> | ||
<td><a href="https://huggingface.co/runwayml/stable-diffusion-inpainting"> runwayml/stable-diffusion-inpainting </a></td> | ||
</tr> | ||
<tr style="border-top: 2px solid black"> | ||
<td>Image Variation</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/image_variation">Stable Diffusion Image Variation</a></td> | ||
<td><a href="https://huggingface.co/lambdalabs/sd-image-variations-diffusers"> lambdalabs/sd-image-variations-diffusers </a></td> | ||
</tr> | ||
<tr style="border-top: 2px solid black"> | ||
<td>Super Resolution</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/upscale">Stable Diffusion Upscale</a></td> | ||
<td><a href="https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler"> stabilityai/stable-diffusion-x4-upscaler </a></td> | ||
</tr> | ||
<tr> | ||
<td>Super Resolution</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/latent_upscale">Stable Diffusion Latent Upscale</a></td> | ||
<td><a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler"> stabilityai/sd-x2-latent-upscaler </a></td> | ||
</tr> | ||
</table> | ||
|
||
## Popular libraries using 🧨 Diffusers | ||
|
||
- https://github.com/microsoft/TaskMatrix | ||
- https://github.com/invoke-ai/InvokeAI | ||
- https://github.com/InstantID/InstantID | ||
- https://github.com/apple/ml-stable-diffusion | ||
- https://github.com/Sanster/lama-cleaner | ||
- https://github.com/IDEA-Research/Grounded-Segment-Anything | ||
- https://github.com/ashawkey/stable-dreamfusion | ||
- https://github.com/deep-floyd/IF | ||
- https://github.com/bentoml/BentoML | ||
- https://github.com/bmaltais/kohya_ss | ||
- +14,000 other amazing GitHub repositories 💪 | ||
|
||
Thank you for using us ❤️. | ||
|
||
## Credits | ||
|
||
This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today: | ||
|
||
- @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion) | ||
- @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion) | ||
- @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim) | ||
- @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch) | ||
|
||
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights. | ||
|
||
## Citation | ||
|
||
```bibtex | ||
@misc{von-platen-etal-2022-diffusers, | ||
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Dhruv Nair and Sayak Paul and William Berman and Yiyi Xu and Steven Liu and Thomas Wolf}, | ||
title = {Diffusers: State-of-the-art diffusion models}, | ||
year = {2022}, | ||
publisher = {GitHub}, | ||
journal = {GitHub repository}, | ||
howpublished = {\url{https://github.com/huggingface/diffusers}} | ||
} | ||
``` |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.