Skip to content

Latest commit

 

History

History
78 lines (51 loc) · 3.27 KB

README.md

File metadata and controls

78 lines (51 loc) · 3.27 KB

Trajectory-Optimization

This repo contains trajectory-optimisation on some basic systems (ex: pendulum,cartpole ,quadrotors and manipulators). Will be implementing algorithms like finite horizon LQR, iLQR , AL-ilQR,Box DDP and DIRCOL.

Installation details:

git clone https://github.com/yaswanth1701/Trajectory-Optimization.git
cd Trajectory-Optimization
git submodule update --init --recursive
  • Make sure to run gym-pybullet-drones inside the conda environment (for details click here).

Demo:

video (credits: ppap36)

Algorithms :

  • Infinite horizon LQR:
with external disturbance(0-50N) -

  • Iterative LQR :

  • Iterative LQR (with line search) :

  • Iterative LQR (with finite-horizon LQR for trajectory tracking) :

  • Infinite LQR (with quaternion as state):

  • MPC using DIRCOL :

for code refer here.

Current environments:

  • Cartpole (gym)
  • Pendulum (gym)
  • Quadrotor (PyBullet)
  • Turtlebot3 (gazebo)
  • 5 link Biped (matplotlib)

References: