Skip to content

Code of the paper "Synthesizing Control Barrier Functions With Feasible Region Iteration for Safe Reinforcement Learning".

Notifications You must be signed in to change notification settings

yangyujie-jack/Feasible-Region-Iteration

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Feasible-Region-Iteration

Code of the paper "Synthesizing Control Barrier Functions With Feasible Region Iteration for Safe Reinforcement Learning" published on IEEE Transactions on Automatic Control.
paper | website

Installation

# Create environemnt
mamba create -n fri python=3.9 numpy sympy jaxlib gym matplotlib scikit-learn dm-haiku numpyro optax
# tqdm tensorboard tensorboardX matplotlib scikit-learn black snakeviz ipykernel ipywidgets Cython imageio cffi fasteners
mamba activate fri
# One of: Install jax WITH CUDA
pip install "jax[cuda11_cudnn82]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# Or: Install jax WITHOUT CUDA
pip install --upgrade "jax[cpu]"
# Install package
pip install SumOfSquares
# pip install -r requirements.txt
pip install -e .

# Optional: Install safety-gym
pip install glfw
pip install mujoco-py==2.0.2.13 --no-cache-dir --no-binary :all: --no-build-isolation
pip install -e .  # in safety-gym

The training environments are provided in the safe-env package.

About

Code of the paper "Synthesizing Control Barrier Functions With Feasible Region Iteration for Safe Reinforcement Learning".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published