Skip to content

Python library for parsing and using FTA STOPS output with Pandas.

License

Notifications You must be signed in to change notification settings

wsp-sag/pySTOPS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pySTOPS

A utility for parsing and reading FTA STOPS Reports and Skim outputs with python, Numpy, and Pandas. The tool currently supports parsing STOPS skims and the following tables from the Results file:

  • 1.02 (Station Listing)
  • 2.04, 2.05, 2.07, 2.08,
  • 3.01, 3.02, 3.03,
  • 4.01, 4.04
  • 8.01 (PMT Change)
  • 9.01 (Station Boardings)
  • 10.01 (Route Boardings)
  • Assorted tables from Section 15: Detailed District-to-District Linked Trips and Selected Station-Station Flows (See listing in reader.py)

More table parsers coming soon.

Happily accepting additions.

Usage

In a real world usage, reading in a STOPS Report table into a Pandas dataframe becomes trivial.

import pystops

pystops.parse_table(report_file, '10.01')

For the data file in the example directory, this will return the following Pandas dataframe.

route_id route_name route_count exist_walk exist_knr exist_pnr exist_all ... bld_all
1&C --1-Metric/South Congress 6227 5394 242 117 5754 ... 117
... ... ... ...
990&C --990-Manor/Elgin Express 83 1 42 10 52 ... 52

An example notebook is also available to demonstrate use cases and application.

Installation

The project relies on Python.

  1. Create a pySTOPS-oriented virtual python environment. Recommend using a Anaconda Conda virtual env with the environment.yml included in this repository.
>>conda env create -f environment.yml
  1. Switch the Virtual Env
conda activate pystops
  1. Use the setup.py to install the package.
>>python setup.py install
  1. Move to the test folder.
>>cd tests
  1. Run example
python example.py

Additional Tables

The pySTOPS library searches the STOPS Results file for tags the start and end of each table, and the library then processes these tags to create Pandas DataFrames. If you want to add support for an additional table, modify the _table_parameters dictionary in the reader.py Python file.

The table name (e.g., '2.04', '10.01') is the key for each dictionary entry, and it is the way that the library finds the appropriate table. The rest of potential tags are below.

Tag Required Description
df_drop_top_rows (Integer) Number of any extranenous top rows to discard
df_drop_tail_rows (Integer) Number of any extranenous bottom (tail) rows to discard
end_table_tag X (String) Identify the last row of the data table
int_columns (String Array) Force a retyping of columns to integers
index_col (String) Set the index of the DataFrame to a specific column
rename_columns (Dictionary) Column name mappings
reset_header (Boolean) Change the header names to column numbers
skip_rows (Integer) Number of lines to skip in the table header
widths (Integer Array) Fixed width column lengths for the table

About

Python library for parsing and using FTA STOPS output with Pandas.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published