This is an implement of the LG-FGAD paper accepted by the 33rd International Joint Conference on Artificial Intelligence (IJCAI-24).
- python 3.8, pytorch, torch-geometric, torch-sparse, numpy, scikit-learn, pandas
If you have installed above mentioned packages you can skip this step. Otherwise run:
pip install -r requirements.txt
To generate results
python LG-FGAD_oneDS.py --data_group DD --eval True
To train LG-FGAD without loading saved weight files
python LG-FGAD_oneDS.py --data_group DD --eval False
To generate results
python LG-FGAD_multiDS.py --data_group molecules --eval True
To train LG-FGAD without loading saved weight files
python LG-FGAD_multiDS.py --data_group molecules --eval False
The optional multi-datasets in this code include mix, biochem, molecules and small.
If you use the code or find this repository useful for your research, please consider citing our paper.
@inproceedings{cai2024lgfgad,
title={LG-FGAD: An Effective Federated Graph Anomaly Detection Framework},
author={Jinyu Cai, Yunhe Zhang, Jicong Fan, See-Kiong Ng},
booktitle={Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI-24)},
pages={3760--3769},
year={2024}
}