First, we setup a conda environment with the required dependencies:
conda create -n tabular-dl-transformer python=3.10 -y
conda activate tabular-dl-transformer
conda install pytorch::pytorch=2.0.0 -c pytorch -y
conda install scikit-learn=1.2.2 pandas=2.0.1 tqdm=4.65.0 optuna=3.2.0 -c conda-forge -y
pip install einops==0.6.1
While these dependencies are installing, download the Adult Data Set
and store the files in data/raw/adult
. This results in the following directory:
data/raw/adult
adult.data
adult.names
adult.test
After installing the dependencies and the dataset, call one of the following scripts:
main_hyper.py
: Run hyperparameter tuning, the type of model and encoding can be changed using command line arguments, runpython main_hyper.py --help
for more details.main_train.py
: Train a model for different seeds using a given set of hyperparameters. The type of model, and other options can be altered using command line arguments. For more details, runpython main_train.py --help
.