Skip to content

LLM benchmark tools for openai compatible server on LLM and MLLM.

License

Notifications You must be signed in to change notification settings

wanzhenchn/llm-benchmarks

Repository files navigation

LLM-Benchmarks

A Benchmark Toolbox for LLM Performance (Inference and Evalution).

license


Latest News 🔥

  • [2025/03/06] Switched from v1/completions to v1/chat/completions API for openai compatible server on LLM and MLLM.
  • [2024/07/04] Support for evaluation with vLLM backend using lm-evaluation-harness.
  • [2024/06/21] Added support for inference performance benchmark with LMDeploy and vLLM.
  • [2024/06/14] Added support for inference performance benchmark with TensorRT-LLM.
  • [2024/06/14] We officially released LLM-Benchmarks!

LLM-Benchmarks Overview

LLM-Benchmarks is an easy-to-use toolbox for benchmarking Large Language Models (LLMs) performance on inference and evalution.

Getting Started

Download the ShareGPT dataset

You can download the dataset by running:

wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

Prepare for Docker image and container environment

You can build Docker images locally by running:

# for tensorrt-llm
bash scripts/trt_llm/build_docker.sh all

# for lmdeploy
bash scripts/lmdeploy/build_docker.sh

# for vllm
bash scripts/vllm/build_docker.sh

or use the available images by docker pull ${Image}:${Tag}:

Image Tag
registry.cn-beijing.aliyuncs.com/devel-img/lmdeploy 0.6.2-arch_808990
registry.cn-beijing.aliyuncs.com/devel-img/vllm 0.6.3.post2.dev59-6c5af09b-arch_808990
registry.cn-beijing.aliyuncs.com/devel-img/tensorrt-llm 0.17.0.dev2024121700-arch_8090

Run benchmarks

  • Inference Performance
# Please confirm the version of the image used in the script
pip3 install -r requirements.txt
bash run_benchmark.sh backend(lmdeploy/vllm/tensorrt-llm) model_path model_type(llm/vlm) dataset_path dataset_name port device_id(0 or 0,1) log_name
  • Task Evaluation
# Build evalution image
bash scripts/evaluation/build_docker.sh vllm # (or lmdeploy or trt-llm)

# Evalution with vLLM backend
bash run_eval.sh mode(fp16, fp8-kv-fp16, fp8-kv-fp8) model_path device_id(like 0 or 0,1)"

About

LLM benchmark tools for openai compatible server on LLM and MLLM.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published