Skip to content

w86763777/pytorch-image-generation-metrics

Repository files navigation

Pytorch Implementation of Common Image Generation Metrics

PyPI

Installation

pip install pytorch-image-generation-metrics

Quick Start

from pytorch_image_generation_metrics import get_inception_score, get_fid

images = ... # [N, 3, H, W] normalized to [0, 1]
IS, IS_std = get_inception_score(images)        # Inception Score
FID = get_fid(images, 'path/to/fid_ref.npz') # Frechet Inception Distance

The file path/to/fid_ref.npz is compatiable with the official FID implementation.

Notes

The FID implementation is inspired by pytorch-fid.

This repository is developed for personal research. If you find this package useful, please feel free to open issues.

Features

  • Currently, this package supports the following metrics:
  • The computation procedures for IS and FID are integrated to avoid multiple forward passes.
  • Supports reading images on the fly to prevent out-of-memory issues, especially for large-scale images.
  • Supports computation on GPU to speed up some CPU operations, such as np.cov and scipy.linalg.sqrtm.

Reproducing Results of Official Implementations on CIFAR-10

Train IS Test IS Train(50k) vs Test(10k)
FID
Official 11.24±0.20 10.98±0.22 3.1508
ours 11.26±0.13 10.97±0.19 3.1525
ours use_torch=True 11.26±0.15 10.97±0.20 3.1457

The results differ slightly from the official implementations due to the framework differences between PyTorch and TensorFlow.

Documentation

Prepare Statistical Reference for FID

  • Download the pre-calculated reference, or
  • Calculate the statistical reference for your custom dataset using the command-line tool:
    python -m pytorch_image_generation_metrics.fid_ref \
        --path path/to/images \
        --output path/to/fid_ref.npz
    See fid_ref.py for details.

Inception Features

  • When getting IS or FID, the InceptionV3 model will be loaded into torch.device('cuda:0') by default.
  • Change the device argument in the get_* functions to set the torch device.

Using torch.Tensor as images

  • Prepare images as torch.float32 tensors with shape [N, 3, H, W], normalized to [0,1].
    from pytorch_image_generation_metrics import (
        get_inception_score,
        get_fid,
        get_inception_score_and_fid
    )
    
    images = ... # [N, 3, H, W]
    assert 0 <= images.min() and images.max() <= 1
    
    # Inception Score
    IS, IS_std = get_inception_score(
        images)
    
    # Frechet Inception Distance
    FID = get_fid(
        images, 'path/to/fid_ref.npz')
    
    # Inception Score & Frechet Inception Distance
    (IS, IS_std), FID = get_inception_score_and_fid(
        images, 'path/to/fid_ref.npz')

Using PyTorch DataLoader to Provide Images

  1. Use pytorch_image_generation_metrics.ImageDataset to collect images from your storage or use your custom torch.utils.data.Dataset.

    from pytorch_image_generation_metrics import ImageDataset
    from torch.utils.data import DataLoader
    
    dataset = ImageDataset(path_to_dir, exts=['png', 'jpg'])
    loader = DataLoader(dataset, batch_size=50, num_workers=4)

    You can wrap a generative model in a dataset to support generating images on the fly.

    class GeneratorDataset(Dataset):
        def __init__(self, G, noise_dim):
            self.G = G
            self.noise_dim = noise_dim
    
        def __len__(self):
            return 50000
    
        def __getitem__(self, index):
            return self.G(torch.randn(1, self.noise_dim))
    
    dataset = GeneratorDataset(G, noise_dim=128)
    loader = DataLoader(dataset, batch_size=50, num_workers=0)
  2. Calculate metrics

    from pytorch_image_generation_metrics import (
        get_inception_score,
        get_fid,
        get_inception_score_and_fid
    )
    
    # Inception Score
    IS, IS_std = get_inception_score(
        loader)
    
    # Frechet Inception Distance
    FID = get_fid(
        loader, 'path/to/fid_ref.npz')
    
    # Inception Score & Frechet Inception Distance
    (IS, IS_std), FID = get_inception_score_and_fid(
        loader, 'path/to/fid_ref.npz')

Load Images from a Directory

  • Calculate metrics for images in a directory and its subfolders.
    from pytorch_image_generation_metrics import (
        get_inception_score_from_directory,
        get_fid_from_directory,
        get_inception_score_and_fid_from_directory)
    
    IS, IS_std = get_inception_score_from_directory(
        'path/to/images')
    FID = get_fid_from_directory(
        'path/to/images', 'path/to/fid_ref.npz')
    (IS, IS_std), FID = get_inception_score_and_fid_from_directory(
        'path/to/images', 'path/to/fid_ref.npz')

Accelerating Matrix Computation with PyTorch

  • Set use_torch=True when calling functions like get_inception_score, get_fid, etc.

  • WARNING: when use_torch=True is used, the FID might be nan due to the unstable implementation of matrix sqrt root.

Tested Versions

  • python 3.9 + torch 1.13.1 + CUDA 11.7
  • python 3.9 + torch 2.3.0 + CUDA 12.1

License

This implementation is licensed under the Apache License 2.0.

This implementation is derived from pytorch-fid, licensed under the Apache License 2.0.

FID was introduced by Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler and Sepp Hochreiter in "GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium", see https://arxiv.org/abs/1706.08500

The original implementation of FID is by the Institute of Bioinformatics, JKU Linz, licensed under the Apache License 2.0. See https://github.com/bioinf-jku/TTUR.