Skip to content

[Feature]Add async tensor parallelism using compilation pass #17882

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 8 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -312,6 +312,7 @@ steps:
- pytest -v -s compile/test_fusion.py
- pytest -v -s compile/test_silu_mul_quant_fusion.py
- pytest -v -s compile/test_sequence_parallelism.py
- pytest -v -s compile/test_async_tp.py

- label: PyTorch Fullgraph Smoke Test # 9min
mirror_hardwares: [amdexperimental, amdproduction]
Expand Down
18 changes: 18 additions & 0 deletions tests/compile/backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@

from torch import fx

from vllm.compilation.fx_utils import (find_specified_fn,
find_specified_fn_maybe)
from vllm.compilation.inductor_pass import InductorPass
from vllm.config import get_current_vllm_config

Expand Down Expand Up @@ -44,3 +46,19 @@ def post_pass(self, graph: fx.Graph):
self.graph_post_pass = deepcopy(graph)
# assign by reference, will reflect the final state of the graph
self.final_graph = graph

def check_before_ops(self, ops,
find_fn=find_specified_fn, \
find_fn_maybe=find_specified_fn_maybe, \
ops_fully_replaced=True):
for op in ops:
find_fn(self.graph_pre_pass.nodes, op)
if ops_fully_replaced:
assert find_fn_maybe(self.graph_post_pass.nodes, op) is None

def check_after_ops(self, ops,
find_fn=find_specified_fn, \
find_fn_maybe=find_specified_fn_maybe):
for op in ops:
find_fn(self.graph_post_pass.nodes, op)
assert find_fn_maybe(self.graph_pre_pass.nodes, op) is None
248 changes: 248 additions & 0 deletions tests/compile/test_async_tp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
# SPDX-License-Identifier: Apache-2.0

import json

import pytest
import torch

import vllm.envs as envs
from vllm.compilation.collective_fusion import AsyncTPPass
from vllm.config import (CompilationConfig, DeviceConfig, ModelConfig,
PassConfig, VllmConfig)
from vllm.distributed import (tensor_model_parallel_all_gather,
tensor_model_parallel_reduce_scatter)
from vllm.distributed.parallel_state import (init_distributed_environment,
initialize_model_parallel)
from vllm.platforms import current_platform
from vllm.utils import update_environment_variables

from ..models.registry import HF_EXAMPLE_MODELS
from ..utils import (compare_two_settings, create_new_process_for_each_test,
multi_gpu_test)
from .backend import TestBackend

prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]


class TestMMRSModel(torch.nn.Module):

def __init__(self, hidden_size=16):
super().__init__()
self.hidden_size = hidden_size
self.gate_proj = torch.nn.Parameter(torch.empty(
(self.hidden_size * 2, hidden_size)),
requires_grad=False)
# Initialize weights
torch.nn.init.normal_(self.gate_proj, std=0.02)

def forward(self, hidden_states):
"""
Forward pass implementing the mm + reduce scatter in the FX graph

"""
# Reshape input
view = hidden_states.reshape(-1, self.hidden_size)

# matrix multiplication
permute = self.gate_proj.permute(1, 0)
mm = torch.mm(view, permute)
reduce_scatter = tensor_model_parallel_reduce_scatter(mm, dim=0)
return reduce_scatter

def ops_in_model_before(self):
return [torch.ops.vllm.reduce_scatter.default]

def ops_in_model_after(self):
return [torch.ops.symm_mem.fused_matmul_reduce_scatter.default]


class TestAGMMModel(torch.nn.Module):

def __init__(self, hidden_size=16):
super().__init__()
self.hidden_size = hidden_size
self.weight = torch.nn.Parameter(torch.empty(
(hidden_size, hidden_size)),
requires_grad=False)
# Initialize weights
torch.nn.init.normal_(self.weight, std=0.02)

def forward(self, hidden_states):
"""
Forward pass implementing the mm + all gather in the FX graph
"""
# Reshape input
view = hidden_states.reshape(-1, self.hidden_size)
all_gather = tensor_model_parallel_all_gather(view, dim=0)
permute = self.weight.permute(1, 0)
mm = torch.mm(all_gather, permute)
return mm

def ops_in_model_before(self):
return [torch.ops.vllm.all_gather.default]

def ops_in_model_after(self):
return [torch.ops.symm_mem.fused_all_gather_matmul.default]


@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize("test_model", [TestMMRSModel, TestAGMMModel])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("seq_len", [16])
@pytest.mark.parametrize("hidden_size", [16])
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda"],
reason="Only test on CUDA")
def test_async_tp_pass_replace(test_model: str, batch_size: int, seq_len: int,
hidden_size: int, dtype: torch.dtype):
num_processes = 2

def run_torch_spawn(fn, nprocs):
# need to use torch.mp.spawn otherwise will have problems with
# torch.distributed and cuda
torch.multiprocessing.spawn(fn,
args=(num_processes, test_model,
batch_size, seq_len, hidden_size,
dtype),
nprocs=nprocs)

run_torch_spawn(async_tp_pass_on_test_model, num_processes)


def async_tp_pass_on_test_model(local_rank: int, world_size: int,
test_model_cls: torch.nn.Module,
batch_size: int, seq_len: int,
hidden_size: int, dtype: torch.dtype):
current_platform.seed_everything(0)

device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
torch.set_default_device(device)
torch.set_default_dtype(dtype)

update_environment_variables({
'RANK': str(local_rank),
'LOCAL_RANK': str(local_rank),
'WORLD_SIZE': str(world_size),
'MASTER_ADDR': 'localhost',
'MASTER_PORT': '12345',
})

# initialize distributed
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)

# configure vllm config for SequenceParallelismPass
vllm_config = VllmConfig()
vllm_config.compilation_config = CompilationConfig(pass_config=PassConfig(
enable_async_tp=True, ), )
vllm_config.device_config = DeviceConfig(device=torch.device("cuda"))

# this is a fake model name to construct the model config
# in the vllm_config, it's not really used.
model_name = "nm-testing/TinyLlama-1.1B-Chat-v1.0-FP8-e2e"
vllm_config.model_config = ModelConfig(model=model_name,
task="auto",
tokenizer=model_name,
tokenizer_mode="auto",
trust_remote_code=True,
dtype=dtype,
seed=42)

async_tp_pass = AsyncTPPass(vllm_config)
backend = TestBackend(async_tp_pass)

model = test_model_cls(hidden_size)

hidden_states = torch.randn((batch_size * seq_len, hidden_size),
dtype=dtype,
requires_grad=False)

compiled_model = torch.compile(model, backend=backend)
compiled_model(hidden_states)

# In pre-nodes, all gather or reduce scatter should exist,
# fused_matmul_reduce_scatter or fused_all_gather_matmul should not
backend.check_before_ops(model.ops_in_model_before(),
ops_fully_replaced=False)

# In post-nodes, fused_matmul_reduce_scatter or \
# fused_all_gather_matmul should exist
backend.check_after_ops(model.ops_in_model_after())


@create_new_process_for_each_test()
@pytest.mark.parametrize("model_id", ["meta-llama/Llama-3.2-1B-Instruct"])
@pytest.mark.parametrize("tp_size", [2])
@pytest.mark.parametrize("async_tp_enabled", [True])
@pytest.mark.parametrize("distributed_backend", ["mp"])
@pytest.mark.parametrize("eager_mode", [False, True])
def test_async_tp_pass_correctness(
model_id: str,
tp_size: int,
async_tp_enabled: bool,
distributed_backend: str,
eager_mode: bool,
num_gpus_available: int,
):
model_info = HF_EXAMPLE_MODELS.find_hf_info(model_id)
model_info.check_transformers_version(on_fail="skip")
model_info.check_available_online(on_fail="skip")

pp_size = 1
if num_gpus_available < tp_size:
pytest.skip(f"Need at least {tp_size} x {pp_size} GPUs")

common_args = [
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--max-num-seqs",
"8",
]
if eager_mode:
common_args.append("--enforce-eager")

compilation_config = {
'level': 3,
'compile_sizes': [2, 4, 8],
'splitting_ops': [],
'pass_config': {
'enable_async_tp': async_tp_enabled
},
}

async_tp_env = tp_env = {
"VLLM_USE_V1": "1",
}

aysnc_tp_args = [
*common_args,
"--tensor-parallel-size",
str(tp_size),
"--distributed-executor-backend",
distributed_backend,
"--compilation_config",
json.dumps(compilation_config),
]

tp_args = [
*common_args,
"--tensor-parallel-size",
str(tp_size),
"--distributed-executor-backend",
"mp",
]

compare_two_settings(model_id,
aysnc_tp_args,
tp_args,
async_tp_env,
tp_env,
method="generate")
36 changes: 17 additions & 19 deletions tests/compile/test_fusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,10 @@ def __init__(self, hidden_size: int, eps: float, static: bool,
self.cutlass_fp8_enabled = cutlass_fp8_enabled
self.norm = [RMSNorm(hidden_size, eps) for _ in range(3)]
self.wscale = [torch.rand(1, dtype=torch.float32) for _ in range(2)]
self.key = QuantKey(dtype=FP8_DTYPE,
static=static,
per_tensor=static,
symmetric=True)
if static:
self.scale = [torch.rand(1, dtype=torch.float32) for _ in range(2)]
else:
Expand Down Expand Up @@ -59,6 +63,15 @@ def forward(self, x):
y3, resid = self.norm[2](x3, resid) # use resid here
return y3

def ops_in_model_before(self):
return [QUANT_OPS[self.key]]

def ops_in_model_after(self):
return [
FUSED_OPS[FusedRMSQuantKey(self.key, False)],
FUSED_OPS[FusedRMSQuantKey(self.key, True)]
]


@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("hidden_size", [64, 3392, 4096])
Expand Down Expand Up @@ -107,25 +120,10 @@ def test_fusion_rmsnorm_quant(dtype, hidden_size, num_tokens, eps, static,

torch.testing.assert_close(result, result2, atol=ATOL, rtol=RTOL)

# Check substitution worked
pre_nodes = backend.graph_pre_pass.nodes
post_nodes = backend.graph_post_pass.nodes

# static is per-tensor, dynamic is per-token
key = QuantKey(dtype=FP8_DTYPE,
static=static,
per_tensor=static,
symmetric=True)
rms_quant = FUSED_OPS[FusedRMSQuantKey(key, False)]
add_rms_quant = FUSED_OPS[FusedRMSQuantKey(key, True)]
fp8_quant = QUANT_OPS[key]

# In pre-nodes, fp8 quant should be there and fused kernels should not
assert find_auto_fn_maybe(pre_nodes, rms_quant) is None
assert find_auto_fn_maybe(pre_nodes, add_rms_quant) is None
find_auto_fn(pre_nodes, fp8_quant)
backend.check_before_ops(model.ops_in_model_before(), find_auto_fn,
find_auto_fn_maybe)

# In post-nodes, fused kernels should be there and fp8 quant should not
find_auto_fn(post_nodes, rms_quant)
find_auto_fn(post_nodes, add_rms_quant)
assert find_auto_fn_maybe(post_nodes, fp8_quant) is None
backend.check_after_ops(model.ops_in_model_after(), find_auto_fn,
find_auto_fn_maybe)
Loading