Skip to content

Commit

Permalink
support DeepSeek MTP spec decode
Browse files Browse the repository at this point in the history
Signed-off-by: Lu Fang <[email protected]>
  • Loading branch information
luccafong committed Feb 5, 2025
1 parent 18016a5 commit 9de0bdf
Show file tree
Hide file tree
Showing 13 changed files with 916 additions and 38 deletions.
2 changes: 2 additions & 0 deletions tests/models/registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -278,6 +278,8 @@ def check_available_online(
speculative_model="abhigoyal/vllm-medusa-llama-68m-random"), # noqa: E501
"MLPSpeculatorPreTrainedModel": _HfExamplesInfo("JackFram/llama-160m",
speculative_model="ibm-ai-platform/llama-160m-accelerator"), # noqa: E501
"DeepSeekMTPModel": _HfExamplesInfo("luccafong/deepseek_mtp_main_random",
speculative_model="luccafong/deepseek_mtp_draft_random"), # noqa: E501
}

_FALLBACK_MODEL = {
Expand Down
313 changes: 313 additions & 0 deletions tests/spec_decode/e2e/test_mtp_correctness.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,313 @@
# SPDX-License-Identifier: Apache-2.0
"""This docstring details important information on the testing methodology.
Most of the tests rely on "greedy equality", where we expect the output of
speculative decoding on a sequence to exactly match the output of normal non-
speculative decoding.
Since speculative decoding with rejection sampling guarantees that the output
distribution matches the target model's output distribution (up to hardware
numerics, see https://arxiv.org/pdf/2302.01318.pdf), we can expect greedy
equality.
However, we still need to verify below scenario could be passed:
* Batch size 1 greedy equality
* Batch size >1 greedy equality
* Test greedy equality under preemption
* Test greedy equality under various number of speculative tokens.
With those tests, we can say at least, mtp would not break the
correctess for the target model outputs.
"""

import pytest

from .conftest import run_equality_correctness_test

# main model
MAIN_MODEL = "luccafong/deepseek_mtp_main_random"

# speculative model
SPEC_MODEL = "luccafong/deepseek_mtp_draft_random"

# max. number of speculative tokens: this corresponds to
# num_heads in the config.json of the speculator model.
MAX_SPEC_TOKENS = 3

# precision
PRECISION = "bfloat16"


@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Print spec metrics.
"disable_log_stats": False,
# Precision
"dtype": PRECISION,
# Main model
"model_name": MAIN_MODEL,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
])
@pytest.mark.parametrize("output_len", [
128,
])
@pytest.mark.parametrize("batch_size", [1, 32])
@pytest.mark.parametrize("seed", [1])
def test_mtp_e2e_greedy_correctness(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs, test_llm_kwargs,
batch_size: int, output_len: int,
seed: int):

run_equality_correctness_test(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs, test_llm_kwargs,
batch_size, output_len, seed)


@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Print spec metrics.
"disable_log_stats": False,
# Precision
"dtype": PRECISION,
# Main model
"model_name": MAIN_MODEL,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_logprobs_during_spec_decoding": False,
},
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_logprobs_during_spec_decoding": True,
},
])
@pytest.mark.parametrize("output_len", [
128,
])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("seed", [1])
@pytest.mark.parametrize("logprobs", [1, 6])
def test_mtp_e2e_greedy_logprobs(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs, test_llm_kwargs,
batch_size: int, output_len: int, seed: int,
logprobs: int):

run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
output_len,
seed,
logprobs=logprobs,
prompt_logprobs=logprobs,
disable_logprobs=test_llm_kwargs[
'disable_logprobs_during_spec_decoding'])


@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"enforce_eager": False,
# Print spec metrics.
"disable_log_stats": False,
# Precision
"dtype": PRECISION,
# Main model
"model_name": MAIN_MODEL,
"gpu_memory_utilization": 0.85
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
])
@pytest.mark.parametrize("output_len", [
128,
])
@pytest.mark.parametrize("batch_size", [1, 32])
@pytest.mark.parametrize("seed", [1])
def test_mtp_e2e_greedy_correctness_cuda_graph(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size: int,
output_len: int, seed: int):
"""Verify greedy equality with cuda graph enabled and different
batch sizes."""
run_equality_correctness_test(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs, test_llm_kwargs,
batch_size, output_len, seed)


@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"block_size": 8,
# 2 for small prompt, 256//8 for generated.
"num_gpu_blocks_override": 2 + 256 // 8,
"max_model_len": (2 + 256 // 8) * 8,
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Precision
"dtype": PRECISION,
# Main model
"model_name": MAIN_MODEL,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
])
@pytest.mark.parametrize(
"output_len",
[
# Use small output len for fast test.
128,
])
@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize("seed", [1])
def test_mtp_e2e_greedy_correctness_with_preemption(
vllm_runner, common_llm_kwargs, per_test_common_llm_kwargs,
baseline_llm_kwargs, test_llm_kwargs, batch_size: int, output_len: int,
seed: int):
"""Verify greedy equality, even when some sequences are preempted mid-
generation.
"""
run_equality_correctness_test(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs, test_llm_kwargs,
batch_size, output_len, seed)


@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Precision
"dtype": PRECISION,
# Main model
"model_name": MAIN_MODEL,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize(
"test_llm_kwargs",
[
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": k,
}
# Try a range of num. speculative tokens
for k in range(1, 1 + MAX_SPEC_TOKENS)
])
@pytest.mark.parametrize("batch_size", [2])
@pytest.mark.parametrize(
"output_len",
[
# Use smaller output len for fast test.
32,
])
@pytest.mark.parametrize("seed", [1])
def test_mtp_different_k(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs, baseline_llm_kwargs,
test_llm_kwargs, batch_size: int, output_len: int,
seed: int):
"""Verify that mtp speculative decoding produces exact equality
to without spec decode with different values of num_speculative_tokens.
"""
run_equality_correctness_test(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs, test_llm_kwargs,
batch_size, output_len, seed)


@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Precision
"dtype": PRECISION,
# Main model
"model_name": MAIN_MODEL,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_disable_by_batch_size": 4
}])
@pytest.mark.parametrize("batch_size", [1, 5])
@pytest.mark.parametrize(
"output_len",
[
# Use smaller output len for fast test.
32,
])
@pytest.mark.parametrize("seed", [1])
def test_mtp_disable_queue(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs, baseline_llm_kwargs,
test_llm_kwargs, batch_size: int, output_len: int,
seed: int):
"""Verify that mtp speculative decoding produces exact equality
to without spec decode when speculation is disabled for large
batch sizes.
"""
run_equality_correctness_test(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs, test_llm_kwargs,
batch_size, output_len, seed)


if __name__ == "__main__":
import pytest
pytest.main([__file__])
2 changes: 1 addition & 1 deletion vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -757,7 +757,7 @@ def is_deepseek_mla(self) -> bool:
# TODO add deepseek_v3
return (hasattr(self.hf_text_config, "model_type")) \
and (self.hf_text_config.model_type in \
('deepseek_v2', 'deepseek_v3'))\
('deepseek_v2', 'deepseek_v3', 'deepseek_mtp'))\
and (self.hf_text_config.kv_lora_rank is not None)

def get_head_size(self) -> int:
Expand Down
Loading

0 comments on commit 9de0bdf

Please sign in to comment.