-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain2.py
executable file
·64 lines (53 loc) · 2 KB
/
train2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Standard Library Imports
import math
import torch
import pytorch_lightning as pl
from torch.optim.lr_scheduler import StepLR
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from pytorch_lightning.profilers import PyTorchProfiler
from utils.loggers import LogLearningRateCallback
import hydra
from hydra.utils import instantiate
# Set Tensor Core precision to 'medium' for better performance
torch.set_float32_matmul_precision('medium')
@hydra.main(config_path="configs", config_name="defaults", version_base=None)
def main(cfg: DictConfig):
# Print the configuration for debugging purposes
print(OmegaConf.to_yaml(cfg))
# Instantiate the model and datamodule using Hydra
model = instantiate(cfg.model)
datamodule = instantiate(cfg.datamodule)
# Logger: Pass the entire Hydra configuration for hyperparameter tracking
logger = TensorBoardLogger("tb_logs", name=cfg.name)
logger.log_hyperparams(cfg)
# Define callbacks for model checkpointing and early stopping
checkpoint_callback = ModelCheckpoint(
monitor="val_loss",
dirpath=f"{logger.log_dir}/checkpoints", # Logger's directory
filename="{epoch:02d}-{val_loss:.2f}",
save_top_k=1,
mode="min",
)
early_stopping_callback = EarlyStopping(
monitor="val_loss", patience=10, mode="min"
)
# Trainer Configuration
trainer = pl.Trainer(
gradient_clip_algorithm="norm",
gradient_clip_val=1,
min_epochs=50,
max_epochs=cfg.trainer.max_epochs,
logger=logger,
callbacks=[
checkpoint_callback,
early_stopping_callback,
LogLearningRateCallback()],
log_every_n_steps=cfg.trainer.log_every_n_steps,
accelerator="cpu", # Change to "gpu" or "auto" if using GPUs
)
# Start training
trainer.fit(model, datamodule)
if __name__ == "__main__":
main()