-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·58 lines (50 loc) · 1.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import torch
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from utils.loggers import LogLearningRateCallback
import hydra
from omegaconf import DictConfig
@hydra.main(config_path="configs", config_name="defaults", version_base="1.2")
def main(cfg: DictConfig):
# Ensure log directory exists
os.makedirs(cfg.log_dir, exist_ok=True)
# TensorBoard Logger
logger = TensorBoardLogger(
save_dir=cfg.log_dir, # Central directory
name=None, # Avoid subfolders like 'default'
version=None # Avoid nested folders
)
logger.log_hyperparams(cfg)
version_dir = logger.log_dir
# Checkpoints
checkpoint_callback = ModelCheckpoint(
monitor="val_loss",
dirpath=f"{version_dir}/checkpoints", # Save checkpoints in version_x/checkpoints
filename="{epoch:02d}-{val_loss:.2f}",
save_top_k=5,
mode="min",
)
# Early Stopping
early_stopping_callback = EarlyStopping(
monitor="val_loss", patience=20, mode="min"
)
# Trainer
trainer = pl.Trainer(
gradient_clip_algorithm="norm",
gradient_clip_val=2,
min_epochs=cfg.trainer.min_epochs,
max_epochs=cfg.trainer.max_epochs,
logger=logger,
callbacks=[
checkpoint_callback,
early_stopping_callback,
LogLearningRateCallback()],
log_every_n_steps=cfg.trainer.log_every_n_steps,
accelerator="cpu"
)
# Train the model
trainer.fit(hydra.utils.instantiate(cfg.model), hydra.utils.instantiate(cfg.datamodule))
if __name__ == "__main__":
main()