-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·56 lines (45 loc) · 1.57 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#%%
import hydra
import pytorch_lightning as pl
from hydra.utils import instantiate
from omegaconf import DictConfig
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from utils.loggers import LogLearningRateCallback
@hydra.main(config_path="configs/models", config_name="SOD_trans-lin", version_base=None)
def main(cfg: DictConfig):
# Instantiate the model
model = hydra.utils.instantiate(cfg.model)
print(model._get_left_context())
datamodule = instantiate(cfg.datamodule)
# Logger: Pass the entire Hydra configuration for hyperparameter tracking
logger = TensorBoardLogger("tb_logs", name=cfg.name)
logger.log_hyperparams(cfg)
# Checkpoints and Early Stopping
checkpoint_callback = ModelCheckpoint(
monitor="val_loss",
dirpath=f"{logger.log_dir}/checkpoints", # logger's directory
filename="{epoch:02d}-{val_loss:.2f}",
save_top_k=1,
mode="min",
)
early_stopping_callback = EarlyStopping(
monitor="val_loss", patience=10, mode="min"
)
# Trainer Configuration
trainer = pl.Trainer(
min_epochs=30,
max_epochs=cfg.trainer.max_epochs,
logger=logger,
callbacks=[
checkpoint_callback,
early_stopping_callback,
LogLearningRateCallback()],
log_every_n_steps=cfg.trainer.log_every_n_steps,
accelerator="cpu"
)
#trainer.fit(model, datamodule)
if __name__ == "__main__":
main()
# %%