-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·404 lines (328 loc) · 15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#%%
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from torch.nn import TransformerEncoder, TransformerEncoderLayer
from torch.optim.lr_scheduler import ReduceLROnPlateau, StepLR
from layers import ResidualBlock, CausalResidualBlock, UpsamplingDecoder, PositionalEncoding, SequentialLSTM
from losses import CEtransitionLoss
from hydra.utils import instantiate
from torchmetrics import Accuracy, Precision, Recall
from networks import TransformerEncoderModel, LinearDecoder, LSTMDecoder
# Base Model with Encoder and Decoder
class BaseModel(pl.LightningModule):
def __init__(self, encoder, decoder, loss_fn, learning_rate, weight_decay,
return_valid, lr_scheduler_config=None):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.loss_fn = loss_fn
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.return_valid = return_valid
self.lr_scheduler_config = lr_scheduler_config
self.left_context = self._get_left_context()
# if your encoder has a "return_valid" attribute
self.loss_on_cropped = True if getattr(self.encoder, 'return_valid', False) or self.return_valid else False
print(f"Left context: {self.left_context}")
def forward(self, x):
encoded = self.encoder(x, self.left_context)
if self.return_valid:
decoded = self.decoder(encoded, self.left_context)
else:
decoded = self.decoder(encoded)
return decoded
def compute_loss(self, logits, labels, **kwargs):
return self.loss_fn(logits, labels, **kwargs)
def _common_step(self, batch, stage):
data, labels = batch
labels = labels.squeeze(-1)
if self.loss_on_cropped:
labels = labels[:, self.left_context:]
logits = self(data)
preds = self._pred_from_logits(logits)
loss = self.compute_loss(logits, labels, preds=preds)
acc = (preds == labels).float().mean()
self.log(f"{stage}_loss", loss, on_step=True, on_epoch=True, prog_bar=True)
self.log(f"{stage}_acc", acc, on_step=True, on_epoch=True, prog_bar=True)
return loss
def training_step(self, batch, batch_idx):
return self._common_step(batch, "train")
def validation_step(self, batch, batch_idx):
return self._common_step(batch, "val")
def test_step(self, batch, batch_idx):
return self._common_step(batch, "test")
def _pred_from_logits(self, logits):
probabilities = F.softmax(logits, dim=1)
preds = torch.zeros_like(probabilities[:, 0], dtype=torch.long)
max_probs, max_classes = probabilities.max(dim=1)
threshold_mask = max_probs >= 0.8
preds[threshold_mask] = max_classes[threshold_mask]
return preds
def _get_left_context(self) -> int:
left_context = 0
if hasattr(self.encoder, 'residual_blocks'):
for block in self.encoder.residual_blocks:
# Adjust based on your specific block definition
kernel_size = block.kernel_size
dilation = block.conv1.dilation[0]
left_context += (kernel_size - 1) * dilation
return left_context
def configure_optimizers(self):
# 1. Create an optimizer
optimizer = torch.optim.AdamW(
self.parameters(),
lr=self.learning_rate,
weight_decay=self.weight_decay
)
# 2. If config is provided, create a ReduceLROnPlateau
if self.lr_scheduler_config:
scheduler = {
'scheduler': ReduceLROnPlateau(
optimizer,
mode=self.lr_scheduler_config.get('mode', 'min'),
factor=self.lr_scheduler_config.get('factor', 0.1),
patience=self.lr_scheduler_config.get('patience', 5),
verbose=self.lr_scheduler_config.get('verbose', False),
min_lr=self.lr_scheduler_config.get('min_lr', 1e-6),
),
'monitor': 'val_loss', # Must match the metric name you log
'interval': 'epoch',
'frequency': 1
}
return [optimizer], [scheduler]
# 3. If no lr_scheduler_config, return just the optimizer
return [optimizer]
# Test the models
if __name__ == "__main__":
# Encoder and decoder configuration
resblock_config = [
{'in_filters': 1, 'out_filters': 32, 'dilation': 2,},
{'in_filters': 32, 'out_filters': 64, 'dilation': 3},
]
encoder = TransformerEncoderModel(resblock_config, nhead=4, num_attention_layers=2, dim_feedforward=256, dropout=0.1)
decoder = LSTMDecoder(input_dim=64, hidden_size=128, num_layers=2, num_classes=3)
loss_fn = CEtransitionLoss(smoothness_weight=0.1, transition_penalty_weight=0.1)
model = BaseModel(encoder, decoder, loss_fn, learning_rate=0.001, lr_scheduler_config={'step_size': 4, 'gamma': 0.5},return_valid=False)
# run some random data
data = torch.randn(2, 1, 150)
y = model(data)
print(y.shape)
#%%
'''
class SOD_v1(pl.LightningModule):
def __init__(self, input_length, num_classes,
learning_rate, nhead, num_attention_layers,
dim_feedforward, dropout, resblock_config,
pred_threshold, smoothness_weight=0.1,
transition_penalty_weight=0.1, lr_decay_nstep=4,
lr_decay_factor=0.5, intermediate_dim=128):
"""
Args:
resblock_config: List of dictionaries where each dict specifies
{'in_filters': int, 'out_filters': int, 'dilation': int}.
intermediate_dim: Dimension of the intermediate layer in the decoder.
"""
super(SOD_v1, self).__init__()
self.input_length = input_length
self.num_classes = num_classes
self.learning_rate = learning_rate
self.nhead = nhead
self.num_attention_layers = num_attention_layers
self.dim_feedforward = dim_feedforward
self.dropout = dropout
self.threshold = pred_threshold
self.smoothness_weight = smoothness_weight
self.transition_penalty_weight = transition_penalty_weight
self.lr_decay_nstep = lr_decay_nstep
self.lr_decay_factor = lr_decay_factor
# Dynamically create residual blocks
self.residual_blocks = nn.ModuleList()
for block_config in resblock_config:
self.residual_blocks.append(
CausalResidualBlock(
in_filters=block_config['in_filters'],
out_filters=block_config['out_filters'],
dilation=block_config['dilation']
)
)
# Transformer setup
d_model = resblock_config[-1]['out_filters'] # Final number of filters
encoder_layer = TransformerEncoderLayer(
d_model=d_model, nhead=self.nhead,
dim_feedforward=self.dim_feedforward,
dropout=self.dropout,
batch_first=True
)
self.transformer_encoder = TransformerEncoder(encoder_layer, num_layers=self.num_attention_layers)
self.pos_encoder = PositionalEncoding(d_model=d_model, max_len=500)
# Modify the decoder with two fully connected layers
self.decoder_lin = nn.Sequential(
nn.Linear(d_model, intermediate_dim), # First fully connected layer
nn.ReLU(), # Activation function
nn.Linear(intermediate_dim, num_classes) # Second fully connected layer
)
self.upsampler = UpsamplingDecoder(num_classes, num_classes, input_length)
self.loss_fn = CEtransitionLoss(
self.smoothness_weight,
self.transition_penalty_weight)
def forward(self, x):
# x shape: (batch, 1, time)
features = x
for resblock in self.residual_blocks:
features = resblock(features)
# Transformer expects (seq_len, batch, d_model)
features = features.permute(0, 2, 1) # (batch, time, channels)
# Add positional encoding
features = self.pos_encoder(features)
# Pass through transformer
transformed = self.transformer_encoder(features)
# Decode to classes
class_logits = self.decoder_lin(transformed) # (batch, time_down, num_classes)
class_logits = class_logits.permute(0, 2, 1)
upsampled_logits = self.upsampler(class_logits)
return upsampled_logits # logits and probabilities
def compute_loss(self, logits, labels):
return self.loss_fn(
logits, labels
)
def _common_step(self, batch, stage):
data, labels = batch
labels = labels.squeeze(-1) # (batch, time)
logits = self(data)
# Prediction logic moved to a separate method
preds = self._pred_from_logits(logits)
loss = self.compute_loss(logits, labels)
# Calculate accuracy
acc = (preds == labels).float().mean()
# Log overall metrics
self.log(f"{stage}_loss", loss, on_step=True, on_epoch=True, prog_bar=True)
self.log(f"{stage}_acc", acc, on_step=True, on_epoch=True, prog_bar=True)
return loss
def _get_left_context(self) -> int:
"""
Compute the receptive field (left context) based on CausalResidualBlocks.
Each block contributes:
left_context = (kernel_size - 1) * dilation
"""
left, stride = 0, 1
# Contribution from residual blocks
for resblock in self.residual_blocks:
kernel_size = resblock.kernel_size # Fixed at 3 in your implementation
dilation = resblock.conv1.dilation[0] # Access dilation directly
left += (kernel_size - 1) * dilation * stride
stride *= 1 # Stride remains fixed as 1 in this model
return left
def _pred_from_logits(self, logits):
"""
Converts probabilities to threshold-based predictions.
"""
probabilities = F.softmax(logits, dim=1)
preds = torch.zeros_like(probabilities[:, 0], dtype=torch.long) # Default to class 0
max_probs, max_classes = probabilities.max(dim=1)
threshold_mask = max_probs >= 0.8
preds[threshold_mask] = max_classes[threshold_mask]
return preds
def training_step(self, batch, batch_idx):
return self._common_step(batch, "train")
def validation_step(self, batch, batch_idx):
return self._common_step(batch, "val")
def test_step(self, batch, batch_idx):
return self._common_step(batch, "test")
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=self.learning_rate)
scheduler = {
'scheduler': torch.optim.lr_scheduler.StepLR(
optimizer,
step_size=self.lr_decay_nstep,
gamma=self.lr_decay_factor
),
'interval': 'epoch' # Reduces learning rate every 3 epochs
}
return [optimizer], [scheduler]
#%%
class SOD_lstm1(pl.LightningModule):
def __init__(self, input_length, num_classes, num_filters1,
num_filters2, num_filters3, learning_rate,
hidden_size, num_lstm_layers, scale):
super(SOD_lstm1, self).__init__()
self.input_length = input_length
self.num_classes = num_classes
self.num_filters1 = num_filters1
self.num_filters2 = num_filters2
self.num_filters3 = num_filters3
self.learning_rate = learning_rate
self.hidden_size = hidden_size
self.num_lstm_layers = num_lstm_layers
self.scale = scale
# Convolutional front-end with residual blocks
self.resblock1 = CausalResidualBlock(1, num_filters1, dilation=2)
self.resblock2 = CausalResidualBlock(num_filters1, num_filters2, dilation=3)
self.resblock3 = CausalResidualBlock(num_filters2, num_filters3, dilation=4)
self.resblock4 = CausalResidualBlock(num_filters2, num_filters3, dilation=5)
self.resblock5 = CausalResidualBlock(num_filters2, num_filters3, dilation=6)
# LSTM for sequential processing
self.lstm = SequentialLSTM(
in_channels=num_filters3,
out_channels=num_classes * 2, # Assuming pos and vel components
hidden_size=hidden_size,
num_layers=num_lstm_layers,
scale=scale
)
self.upsampler = UpsamplingDecoder(num_classes, num_classes, input_length)
self.loss_fn = CEtransitionLoss()
def forward(self, x):
# x shape: (batch, 1, time)
features = self.resblock1(x)
features = self.resblock2(features)
features = self.resblock3(features)
features = self.resblock4(features)
features = self.resblock5(features)
# LSTM expects (batch, time, channels)
features = features.permute(0, 2, 1) # (batch, time, channels)
# Reset LSTM state
self.lstm.reset_state()
# Process through LSTM
outputs = []
for t in range(features.shape[1]): # Loop over time
output = self.lstm(features[:, t]) # (batch, out_channels)
outputs.append(output)
outputs = torch.stack(outputs, dim=1) # (batch, time, out_channels)
# Decode to classes
class_logits = outputs.permute(0, 2, 1) # (batch, channels, time)
upsampled_logits = self.upsampler(class_logits)
return upsampled_logits # shape: (batch, num_classes, input_length)
def compute_loss(self, logits, labels):
return self.loss_fn(logits, labels)
def _common_step(self, batch, stage):
data, labels = batch
labels = labels.squeeze(-1) # (batch, time)
logits = self(data)
loss = self.compute_loss(logits, labels)
preds = logits.argmax(dim=1)
acc = (preds == labels).float().mean()
self.log(f"{stage}_loss", loss, on_step=True, on_epoch=True, prog_bar=True)
self.log(f"{stage}_acc", acc, on_step=True, on_epoch=True, prog_bar=True)
return loss
def training_step(self, batch, batch_idx):
return self._common_step(batch, "train")
def validation_step(self, batch, batch_idx):
return self._common_step(batch, "val")
def test_step(self, batch, batch_idx):
return self._common_step(batch, "test")
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=self.learning_rate)
scheduler = {
'scheduler': torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode="min", patience=3, factor=0.5
),
'monitor': 'val_loss'
}
return [optimizer], [scheduler]
if __name__ == "__main__":
model = SOD_v1(input_length=150, num_classes=3, num_filters1=32, num_filters2=64, num_filters3=128,
learning_rate=0.001, nhead=4, num_attention_layers=2, dim_feedforward=256, dropout=0.1)
print(model)
#%%
'''