Skip to content

Commit

Permalink
Publication notebooks (#216)
Browse files Browse the repository at this point in the history
* table setup

* parameter table

* names

* published notebook
  • Loading branch information
MatthewMiddlehurst authored Apr 23, 2024
1 parent a9f3071 commit eafb6de
Show file tree
Hide file tree
Showing 2 changed files with 88 additions and 71 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,8 @@
"# Bake off redux: a review and experimental evaluation of recent time series classification algorithms\n",
"\n",
"This is the webpage and repo package to support the paper \"Bake off redux: a review\n",
"and experimental evaluation of recent time series classification algorithms\" submitted to [Data Mining and Knowledge Discovery](https://link.springer.com/journal/10618).\n",
"and experimental evaluation of recent time series classification algorithms\" published in \n",
"[Data Mining and Knowledge Discovery](https://link.springer.com/article/10.1007/s10618-024-01022-1).\n",
"\n",
"Our results files are stored [here](https://github.com/time-series-machine-learning/tsml-eval/tree/main/tsml_eval/publications/y2023/tsc_bakeoff/results).\n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
@@ -1,15 +1,13 @@
{
"cells": [
{
"attachments": {},
"metadata": {},
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"# Unsupervised Feature Based Algorithms for Time Series Extrinsic Regression\n",
"\n",
"This is the webpage and repo package to support the paper \"Unsupervised Feature Based Algorithms for Time Series Extrinsic Regression\" submitted to IEEE Transactions on Knowledge and Data Engineering (TKDE).\n",
"This is the webpage and repo package to support the paper \"Unsupervised Feature Based Algorithms \n",
"for Time Series Extrinsic Regression\" published in Data Mining and Knowledge Discovery.\n",
"\n",
"Our results files are stored [here](https://github.com/time-series-machine-learning/tsml-eval/tree/main/tsml_eval/publications/y2023/tser_archive_expansion/results).\n",
"\n",
Expand Down Expand Up @@ -64,17 +62,6 @@
},
{
"cell_type": "code",
"execution_count": 1,
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"D:\\CMP_Machine_Learning\\Repositories\\tsml-eval\\venv\\lib\\site-packages\\dask\\dataframe\\_pyarrow_compat.py:17: FutureWarning: Minimal version of pyarrow will soon be increased to 14.0.1. You are using 11.0.0. Please consider upgrading.\n",
" warnings.warn(\n"
]
}
],
"source": [
"from aeon.regression.convolution_based import RocketRegressor\n",
"from sklearn.metrics import mean_squared_error\n",
Expand All @@ -87,10 +74,13 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-12-19T13:14:35.468135700Z",
"start_time": "2023-12-19T13:14:00.609300200Z"
"end_time": "2024-04-23T11:49:31.813513Z",
"start_time": "2024-04-23T11:49:28.312416Z"
}
}
},
"outputs": [
],
"execution_count": 1
},
{
"cell_type": "markdown",
Expand All @@ -105,26 +95,6 @@
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'numpy.ndarray'> <class 'numpy.ndarray'>\n",
"(20, 1, 20) (20,)\n",
"(20, 1, 20) (20,)\n"
]
},
{
"data": {
"text/plain": "array([[[2.39, 2.36, 2.45, 2.45, 2.54, 2.69, 2.63, 2.73, 2.7 , 2.73,\n 2.68, 2.76, 2.76, 2.68, 2.39, 2.4 , 2.36, 2.6 , 2.77, 2.76]],\n\n [[3.02, 3.09, 3.01, 3.01, 2.98, 3.11, 3.13, 3.13, 3.23, 3.36,\n 3.31, 3.25, 3.24, 3.23, 3.15, 3.21, 3.36, 3.3 , 3.4 , 3.62]],\n\n [[3.95, 4.03, 4.07, 4.35, 4.25, 4.33, 4.45, 4.65, 4.77, 4.71,\n 4.66, 4.97, 5.13, 5.21, 5.39, 5.66, 5.52, 5.32, 5.25, 4.96]],\n\n [[2.62, 2.63, 2.63, 2.71, 2.71, 2.72, 2.58, 2.58, 2.58, 2.62,\n 2.61, 2.67, 2.57, 2.59, 2.63, 2.59, 2.59, 2.5 , 2.55, 2.55]],\n\n [[2.44, 2.43, 2.47, 2.48, 2.5 , 2.57, 2.65, 2.62, 2.63, 2.75,\n 2.76, 2.72, 2.77, 2.79, 2.73, 2.91, 2.98, 2.91, 2.86, 2.96]]])"
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# load example TSER dataset\n",
"X_train, y_train = load_minimal_gas_prices(\"TRAIN\")\n",
Expand All @@ -142,10 +112,45 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-12-19T13:14:35.509031300Z",
"start_time": "2023-12-19T13:14:35.470130900Z"
"end_time": "2024-04-23T11:49:31.825482Z",
"start_time": "2024-04-23T11:49:31.814510Z"
}
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'numpy.ndarray'> <class 'numpy.ndarray'>\n",
"(20, 1, 20) (20,)\n",
"(20, 1, 20) (20,)\n"
]
},
{
"data": {
"text/plain": [
"array([[[2.39, 2.36, 2.45, 2.45, 2.54, 2.69, 2.63, 2.73, 2.7 , 2.73,\n",
" 2.68, 2.76, 2.76, 2.68, 2.39, 2.4 , 2.36, 2.6 , 2.77, 2.76]],\n",
"\n",
" [[3.02, 3.09, 3.01, 3.01, 2.98, 3.11, 3.13, 3.13, 3.23, 3.36,\n",
" 3.31, 3.25, 3.24, 3.23, 3.15, 3.21, 3.36, 3.3 , 3.4 , 3.62]],\n",
"\n",
" [[3.95, 4.03, 4.07, 4.35, 4.25, 4.33, 4.45, 4.65, 4.77, 4.71,\n",
" 4.66, 4.97, 5.13, 5.21, 5.39, 5.66, 5.52, 5.32, 5.25, 4.96]],\n",
"\n",
" [[2.62, 2.63, 2.63, 2.71, 2.71, 2.72, 2.58, 2.58, 2.58, 2.62,\n",
" 2.61, 2.67, 2.57, 2.59, 2.63, 2.59, 2.59, 2.5 , 2.55, 2.55]],\n",
"\n",
" [[2.44, 2.43, 2.47, 2.48, 2.5 , 2.57, 2.65, 2.62, 2.63, 2.75,\n",
" 2.76, 2.72, 2.77, 2.79, 2.73, 2.91, 2.98, 2.91, 2.86, 2.96]]])"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 2
},
{
"cell_type": "markdown",
Expand All @@ -158,17 +163,6 @@
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [
{
"data": {
"text/plain": "array([-0.39051194, -0.32556358, -0.26716222, -0.29462747, -0.38713609,\n -0.35210252, -0.35538663, -0.34188738, -0.386536 , -0.38444336,\n -0.28417025, -0.34912216, -0.3575563 , -0.29534897, -0.3730631 ,\n -0.40209279, -0.31955412, -0.34667809, -0.37519843, -0.38101579])"
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# build a ROCKET regressor and make predictions\n",
"rocket = RocketRegressor(num_kernels=1000, random_state=0)\n",
Expand All @@ -178,10 +172,26 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-12-19T13:14:35.774708300Z",
"start_time": "2023-12-19T13:14:35.504064Z"
"end_time": "2024-04-23T11:49:31.848420Z",
"start_time": "2024-04-23T11:49:31.826488Z"
}
}
},
"outputs": [
{
"data": {
"text/plain": [
"array([-0.39051194, -0.32556358, -0.26716222, -0.29462747, -0.38713609,\n",
" -0.35210252, -0.35538663, -0.34188738, -0.386536 , -0.38444336,\n",
" -0.28417025, -0.34912216, -0.3575563 , -0.29534897, -0.3730631 ,\n",
" -0.40209279, -0.31955412, -0.34667809, -0.37519843, -0.38101579])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 3
},
{
"cell_type": "markdown",
Expand All @@ -194,17 +204,6 @@
},
{
"cell_type": "code",
"execution_count": 4,
"outputs": [
{
"data": {
"text/plain": "[0.0807299822065842,\n 0.08058022963859234,\n 1.3423714791418515,\n 0.0742857643859832,\n 0.10120786111499722]"
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"regressors = [\n",
" \"1NN-DTW\",\n",
Expand Down Expand Up @@ -235,10 +234,27 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-12-19T13:14:44.721449Z",
"start_time": "2023-12-19T13:14:35.766729400Z"
"end_time": "2024-04-23T11:49:33.045134Z",
"start_time": "2024-04-23T11:49:31.849418Z"
}
}
},
"outputs": [
{
"data": {
"text/plain": [
"[0.0807299822065842,\n",
" 0.08058022963859234,\n",
" 1.3423714791418515,\n",
" 0.0742857643859832,\n",
" 0.10120786111499722]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 4
},
{
"cell_type": "markdown",
Expand Down

0 comments on commit eafb6de

Please sign in to comment.