This is the official code base for the paper Trajectory World Models for Heterogeneous Environments.
Give it a star 🌟 if you find our work useful!
- 🚩 2025.06.05: Training code is released.
- 🚩 2025.05.01: TrajWorld has been accepted by ICML 2025, congrats!.
- 🚩 2025.02.03: Our paper is released on arXiv.
conda env create -f environment.yaml
conda activate trajworld
To pre-train the TrajWorld model:
python scripts/pretrain/pretrain_trajworld.py history_length=20 log_root_dir=log_pretrain_trajworld exp_name=merge_all n_blocks=6
See more baseline scripts in scripts/pretrain
.
To fine-tune TrajWorld:
python scripts/training/train_trajworld.py env_name=hopper-medium-replay-v2 log_root_dir=log_model_new trm_epoch_steps=5000 dynamics_max_epochs_since_update=300 dynamics_max_epochs=50 seed=183 train_model_only=true exp_name=trajworld_ft trm_lr=1e-5 load_pt_dynamics_path="mergeall_pt/model/trm_dynamics990000.pkl" n_blocks=6
To train from scratch, simply remove the load_pt_dynamics_path argument.
More fine-tuning scripts for baseline models can be found in scripts/training
.
python pred/pred_mse_trajworld.py --env walker2d-random-v2 --model_path <path_to_your_model> --n_blocks 6
Additional baseline scripts: pred
.
python ope/ope_eval.py --algo trajworld --env halfcheetah-expert-v2 --clear_kv_cache_every 10 --trm_lookback_window 10 --group 0 --n_blocks 6
Specify your model path by modifying get_list_dirs()
in ope/ope_eval.py
.
Example commands for other baselines are provided at the top of the file.
python mpc/mpc.py --algo trajworld --env walker2d-medium-replay-v2 --group 5 --clear_kv_cache_every 10 --trm_lookback_window 10 --action_proposal_id 3 --std 0.1
As above, modify get_list_dirs()
in ope/ope_eval.py
to set your model path.
Baseline examples are included in the script.
- UniTraj Dataset
- Pre-trained TrajWorld Model
- Transition prediction evaluation
- OPE evaluation
- MPC evaluation
- Training code for Trajworld, TDM and MLP-Ensemble
If you find this project useful, please cite our paper as:
@article{yin2025trajectory,
title={Trajectory World Models for Heterogeneous Environments},
author={Yin, Shaofeng and Wu, Jialong and Huang, Siqiao and Su, Xingjian and He, Xu and Hao, Jianye and Long, Mingsheng},
journal={arXiv preprint arXiv:2502.01366},
year={2025}
}
If you have any questions, please contact [email protected].
We sincerely appreciate the following github repos for their valuable codebase we build upon: