Object dection using YOLOv3, OpenCV and robot trajectory in a virtual environment Ai2thor
Get this project using
git clone: https://github.com/pxthanh98/robotics.git
System
- OS: Mac OS X 10.9+, Ubuntu 14.04+
- Graphics Card: DX9 (shader model 3.0) or DX11 with feature level 9.3 capabilities.
- CPU: SSE2 instruction set support.
- Python 3.5+
- Linux: X server with GLX module enabled
pip requirements:
ai2thor
keyboard
numpy
matplotlib
opencv
pillow
pynout
numpy
Ai2thor
pip install ai2thor
OpenCV
pip install opencv
Matplotlib
pip install matplotlib
Pynput
pip install pynput
Keyboard
pip install keyboard
- For object decection:
- Step 1 Download the weights file into folder 'challenge 1' and unzip it
https://drive.google.com/file/d/1nks4PxeFBiiSZP-KQCi9U0WPRt_Gk6Ut/view?usp=sharing
- Step 2
cd 'challenge 1'
python main.py
- Step 3
Using keyboard for navigation in ai2thor
'w': Move ahead
's': Move back
'a': Move to the left
'd': Move to the right
'h': Turn left 90 degree
'l': Turn right 90 degree
'j': Look down 30 degree
'k': Look up 30 degree
'esc': Escape
- Step 4
Press 'c' to get an image and prediction. Preidction will be written to the image
prediction.jpg
- For trajectory:
- Step 1
cd 'challenge 2'
sudo python trajectory.py
- Step 2
Using keyboard for navigation in ai2thor
'up arrow': Move ahead
'down arrow': Move back
'left arrow': Move to the left
'right arrow': Move to the right
'h': Turn left 90 degree
'l': Turn right 90 degree
'j': Look down 30 degree
'k': Look up 30 degree
'esc': Escape