Skip to content

thanh-px/robotics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Robotics

Object dection using YOLOv3, OpenCV and robot trajectory in a virtual environment Ai2thor

Getting Started

Get this project using

git clone: https://github.com/pxthanh98/robotics.git

Requirements

System

  • OS: Mac OS X 10.9+, Ubuntu 14.04+
  • Graphics Card: DX9 (shader model 3.0) or DX11 with feature level 9.3 capabilities.
  • CPU: SSE2 instruction set support.
  • Python 3.5+
  • Linux: X server with GLX module enabled

pip requirements:

ai2thor
keyboard
numpy
matplotlib
opencv
pillow
pynout
numpy

Installing

Ai2thor

pip install ai2thor

OpenCV

pip install opencv

Matplotlib

pip install matplotlib

Pynput

pip install pynput

Keyboard

pip install keyboard

Compiling

  1. For object decection:
  • Step 1 Download the weights file into folder 'challenge 1' and unzip it
https://drive.google.com/file/d/1nks4PxeFBiiSZP-KQCi9U0WPRt_Gk6Ut/view?usp=sharing
  • Step 2
cd 'challenge 1'
python main.py
  • Step 3
Using keyboard for navigation in ai2thor
 'w': Move ahead
 's': Move back
 'a': Move to the left
 'd': Move to the right
 'h': Turn left 90 degree
 'l': Turn right 90 degree
 'j': Look down 30 degree
 'k': Look up 30 degree
 'esc': Escape
  • Step 4 Press 'c' to get an image and prediction. Preidction will be written to the imageprediction.jpg
  1. For trajectory:
  • Step 1
cd 'challenge 2'
sudo python trajectory.py
  • Step 2
Using keyboard for navigation in ai2thor
'up arrow': Move ahead
'down arrow': Move back
'left arrow': Move to the left
'right arrow': Move to the right
'h': Turn left 90 degree
'l': Turn right 90 degree
'j': Look down 30 degree
'k': Look up 30 degree
'esc': Escape

Acknowledgments

About

UET - Robotics course spring 2019

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages