Skip to content

tertiarycourses/DeepLearningTensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 

Repository files navigation

Deep Learning and Machine Learning with TensorFlow

These are the exercise files used for Deep Learning and Machine Learning with TensorFlow course.

The course outline can be found in

https://www.tertiarycourses.com.sg/deep-learning-neural-network-tensorflow.html

https://www.tertiarycourses.com.my/deep-learning-neural-network-tensorflow-malaysia.html

Day 1

Module 1 Getting Started 

  • What is TensorFlow
  • Install and Run TensorFlow

Module 2 Basic Tensorflow Operations

  • Constant
  • Graph Operation
  • Math
  • Matrix
  • Placeholder
  • Variable

Module 3 Datasets

  • MNIST Handwritten Digits Dataset
  • CIFAR Image Dataset
  • One Hot Encoding/Decoding
  • Split Dataset to Training/Testing 

Module 4 Machine Learning on TF

  • Regression ML Model
  • Loss Function 
  • Optimizer
  • Training
  • Save and Load Model

Module 5 Neural Network (NN)

  • What is Neural Network
  • Activation Functions
  • Deep Neural Network on MNIST

Day 2

Module 6 Tensorboard

  • What is Tensorboard?
  • Visualize a Tensorboard Graph
  • Output Data to Tensorboard

Module 7 Convolutional Neural Network (CNN)

  • What is CNN?
  • CNN Architecture
  • Convolution Layers
  • Pooling and Dropout Layers
  • CNN on MNIST dataset

Module 8 Recurrent Neural Network (RNN)

  • Sequential Data
  • What is RNN?
  • Types of RNN
  • How to train a RNN
  • Long Term Dependencies
  • LSTM and GRU Cells
  • RNN on IMDB dataset

Module 9 Keras

  • What is Keras?
  • NN with Keras
  • CNN with Keras
  • Transfer Learning with Keras
  • RNN with Keras

Module 10 Appendix (Optional)

  • TF Estimators
  • Eager Mode

Releases

No releases published

Packages

No packages published