Skip to content

Commit

Permalink
677-255 (#1071)
Browse files Browse the repository at this point in the history
Add 677-255 conjecture
  • Loading branch information
teorth authored Jan 30, 2025
1 parent 9734e5d commit 33983d5
Show file tree
Hide file tree
Showing 3 changed files with 40 additions and 38 deletions.
4 changes: 1 addition & 3 deletions paper/intro.tex
Original file line number Diff line number Diff line change
Expand Up @@ -40,9 +40,7 @@ \subsection{The Equational Theories Project}

\subsection{Outcomes}

\note{This text assumes (optimistically) that both the original and finite implication graph will be completely formalized.}

The ETP achieved its primary objectives, with all of the implications for both arbitrary magmas and finite magmas formalized in the proof assistant language \emph{Lean}, and can be found on the ETP GitHub repository. See \Cref{fig:854}, \Cref{fig:1729} for some small fragments of the implication graphs produced. The experience of running such a large collaborative research project introduced several challenges, which we report upon in \Cref{project-sec}. Also, a variety of methods with varying degrees of automation or computer-assistance had to be developed to resolve all the implications, which had quite a variety of difficulty levels.
The ETP achieved almost all of its primary objectives, with almost all of the implications for both arbitrary magmas and finite magmas formalized in the proof assistant language \emph{Lean}, and can be found on the ETP GitHub repository. See \Cref{fig:854}, \Cref{fig:1729} for some small fragments of the implication graphs produced. While the implication graph for the arbitrary magma entailment relation $\vdash$ was completely determined and formalized, one of the $22033636$ implications (and its dual) for the finite magma entailment relation $\vdashfin$ remains open. Specifically, we were unable to obtain either a human-readable or formalized proof or disproof of the implication $E677 \vdashfin E255$ (or its equivalent dual $E2910 \vdashfin E47$), despite extensive efforts from the participants of the project; we tentatively conjecture this implication to be false (i.e., that there exists a finite magma obeying \eqref{eq677} but not \eqref{eq255}), but the refutation appears to be ``immune'' to most of the techniques that we developed for the project. (We were however able to establish that the corresponding implication $E677 \vdash E255$ for arbitrary magmas was false, using the greedy construction discussed in \Cref{greedy-sec}.)

\begin{figure}
\centering
Expand Down
4 changes: 2 additions & 2 deletions paper/main.tdo
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
\contentsline {todo}{Shreyas Srinivas and Pietro Monticone have volunteered to take the lead on this section.}{10}{section*.2}%
\contentsline {todo}{Discuss how the above breaks down when a large and diverse collection of collaborators work over the internet. Consider citing the \href {https://euromathsoc.org/code-of-practice}{EMS webpage for code of practice} for joint responsibility rules }{10}{section*.3}%
\contentsline {todo}{elaborate on what level of overlap was permissible and what we consider excessive}{12}{section*.4}%
\contentsline {todo}{Discuss how the above breaks down when a large and diverse collection of collaborators work over the internet. Consider citing the \href {https://euromathsoc.org/code-of-practice}{EMS webpage for code of practice} for joint responsibility rules }{11}{section*.3}%
\contentsline {todo}{elaborate on what level of overlap was permissible and what we consider excessive}{13}{section*.4}%
70 changes: 37 additions & 33 deletions paper/numbering.tex
Original file line number Diff line number Diff line change
Expand Up @@ -46,40 +46,44 @@ \section{Numbering system}\label{numbering-app}

Below we record some specific equations appearing in this paper, using the alphabet $\x,\y,\z,\w,\uu,\vv$ in place of $0,1,2,3,4,5,\dots$ for readability.
\begin{align}
\x &\formaleq \x & \hbox{(Trivial law)} \label{eq1}\tag{E1} \\
\x &\formaleq \y & \hbox{(Singleton law)} \label{eq2}\tag{E2} \\
\x &\formaleq \x \op \x & \hbox{(Idempotent law)} \label{eq3}\tag{E3} \\
\x &\formaleq \x \op \y & \hbox{(Left-absorptive law)} \label{eq4}\tag{E4} \\
\x &\formaleq \y \op \x & \hbox{(Right-absorptive law)} \label{eq5}\tag{E5} \\
\x &\formaleq \x \op (\y \op \x) \label{eq10}\tag{E10} \\
\x &\formaleq (\x \op \x) \op \x \label{eq23}\tag{E23} \\
\x \op \x &\formaleq \y \op \z \label{eq41}\tag{E41} \\
\x \op \y &\formaleq \y \op \x & \hbox{(Commutative law)} \label{eq43}\tag{E43} \\
\x \op \y &\formaleq \z \op \w & \hbox{(Constant law)} \label{eq46}\tag{E46} \\
\x &\formaleq \y \op (\y \op (\x \op \y)) \label{eq73}\tag{E73} \\
\x &\formaleq (\x \op \x) \op (\x \op \x) \label{eq151}\tag{E151} \\
\x &\formaleq (\y \op \x) \op (\x \op \z) & \hbox{(Central groupoid law)} \label{eq168}\tag{E168} \\
\x &\formaleq (\x \op (\x \op \y)) \op \y \label{eq206}\tag{E206} \\
\x \op \y &\formaleq \x \op (\y \op \z) \label{eq327}\tag{E327} \\
\x &\formaleq (\x \op \y) \op \y \label{eq378}\tag{E378} \\
\x \op \y &\formaleq (\z \op \x) \op \y \label{eq395}\tag{E395} \\
\x &\formaleq \y \op ( (\z \op (\x \op (\y \op \z)))) & \hbox{(Tarski's axiom)} \label{eq543}\tag{E543} \\
\x &\formaleq \x \op ((\y \op \z) \op (\x \op \z)) \label{eq854}\tag{E854}\\
\x &\formaleq \y \op ((\y \op (\x \op \x)) \op \y) \label{eq1110}\tag{E1110} \\
\x &\formaleq \y \op ((\y \op (\x \op \z)) \op \z) \label{eq1117}\tag{E1117} \\
\x &\formaleq \y \op (((\x \op \y) \op \x) \op \y) \label{eq1286}\tag{E1286} \\
\x &\formaleq (\y \op \x) \op (\x \op (\z \op \y)) & \hbox{(Weak central groupoids)}\label{eq1485}\tag{E1485} \\
\x &\formaleq (\y \op \z) \op (\y \op (\x \op \z)) & \hbox{(Exp. $2$ abelian groups)} \label{eq1571}\tag{E1571} \\
\x &\formaleq (\x \op \x) \op ((\x \op \x) \op \x) \label{eq1629}\tag{E1629} \\
\x &\formaleq (\x \op \y) \op ((\x \op \y) \op \y) \label{eq1648}\tag{E1648} \\
\x &\formaleq (\x \op \y) \op ((\y \op \y) \op \z) \label{eq1659}\tag{E1659} \\
\x &\formaleq (\y \op \x) \op ((\x \op \z) \op \z) \label{eq1689}\tag{E1689} \\
\x &\formaleq (\y \op \y) \op ((\y \op \x) \op \y) \label{eq1729}\tag{E1729} \\
\x &\formaleq (\y \op (\x \op (\y \op x))) \op y \label{eq2301}\tag{E2301} \\
\x &\formaleq (\x \op ((\x \op \x) \op \x)) \op \x \label{eq2441}\tag{E2441} \\
\x \op \y &\formaleq \x \op (\y \op (\x \op \y)) \label{eq3316}\tag{E3316}
\end{align}
\x &\formaleq \x & \hbox{(Trivial law)} \label{eq1}\tag{E1} \\
\x &\formaleq \y & \hbox{(Singleton law)} \label{eq2}\tag{E2} \\
\x &\formaleq \x \op \x & \hbox{(Idempotent law)} \label{eq3}\tag{E3} \\
\x &\formaleq \x \op \y & \hbox{(Left-absorptive law)} \label{eq4}\tag{E4} \\
\x &\formaleq \y \op \x & \hbox{(Right-absorptive law)} \label{eq5}\tag{E5} \\
\x &\formaleq \x \op (\y \op \x) \label{eq10}\tag{E10} \\
\x &\formaleq (\x \op \x) \op \x \label{eq23}\tag{E23} \\
\x \op \x &\formaleq \y \op \z \label{eq41}\tag{E41} \\
\x \op \y &\formaleq \y \op \x & \hbox{(Commutative law)} \label{eq43}\tag{E43} \\
\x \op \y &\formaleq \z \op \w & \hbox{(Constant law)} \label{eq46}\tag{E46} \\
\x &\formaleq \x \op (\x \op (\x \op \x)) \label{eq47}\tag{E47} \\
\x &\formaleq \y \op (\y \op (\x \op \y)) \label{eq73}\tag{E73} \\
\x &\formaleq (\x \op \x) \op (\x \op \x) \label{eq151}\tag{E151} \\
\x &\formaleq (\y \op \x) \op (\x \op \z) & \hbox{(Central groupoid law)} \label{eq168}\tag{E168} \\
\x &\formaleq (\x \op (\x \op \y)) \op \y \label{eq206}\tag{E206} \\
\x &\formaleq ((\x \op \x) \op \x) \op \x \label{eq255}\tag{E255} \\
\x \op \y &\formaleq \x \op (\y \op \z) \label{eq327}\tag{E327} \\
\x &\formaleq (\x \op \y) \op \y \label{eq378}\tag{E378} \\
\x \op \y &\formaleq (\z \op \x) \op \y \label{eq395}\tag{E395} \\
\x &\formaleq \y \op ( (\z \op (\x \op (\y \op \z)))) & \hbox{(Tarski's axiom)} \label{eq543}\tag{E543} \\
\x &\formaleq \y \op (\x \op ((\y \op \x) \op \y)) \label{eq677}\tag{E677} \\
\x &\formaleq \x \op ((\y \op \z) \op (\x \op \z)) \label{eq854}\tag{E854}\\
\x &\formaleq \y \op ((\y \op (\x \op \x)) \op \y) \label{eq1110}\tag{E1110} \\
\x &\formaleq \y \op ((\y \op (\x \op \z)) \op \z) \label{eq1117}\tag{E1117} \\
\x &\formaleq \y \op (((\x \op \y) \op \x) \op \y) \label{eq1286}\tag{E1286} \\
\x &\formaleq (\y \op \x) \op (\x \op (\z \op \y)) & \hbox{(Weak central groupoids)}\label{eq1485}\tag{E1485} \\
\x &\formaleq (\y \op \z) \op (\y \op (\x \op \z)) & \hbox{(Exp. $2$ abelian groups)} \label{eq1571}\tag{E1571} \\
\x &\formaleq (\x \op \x) \op ((\x \op \x) \op \x) \label{eq1629}\tag{E1629} \\
\x &\formaleq (\x \op \y) \op ((\x \op \y) \op \y) \label{eq1648}\tag{E1648} \\
\x &\formaleq (\x \op \y) \op ((\y \op \y) \op \z) \label{eq1659}\tag{E1659} \\
\x &\formaleq (\y \op \x) \op ((\x \op \z) \op \z) \label{eq1689}\tag{E1689} \\
\x &\formaleq (\y \op \y) \op ((\y \op \x) \op \y) \label{eq1729}\tag{E1729} \\
\x &\formaleq (\y \op (\x \op (\y \op x))) \op \y \label{eq2301}\tag{E2301}
\end{align}
\begin{align}
\x &\formaleq (\x \op ((\x \op \x) \op \x)) \op \x \label{eq2441}\tag{E2441} \\
\x &\formaleq ((\y \op (\x \op \y)) \op \x) \op \y \label{eq2910}\tag{E2910} \\
\x \op \y &\formaleq \x \op (\y \op (\x \op \y)) \label{eq3316}\tag{E3316} \\
\x \op (\y \op \x) &\formaleq \x \op (\y \op \z) \label{eq4315}\tag{E4315} \\
\x \op (\x \op \x) &\formaleq (\x \op \x) \op \x \label{eq4380}\tag{E4380} \\
\x \op (\y \op \y) &= (\y \op \y) \op \x \label{eq4482}\tag{E4482} \\
Expand Down

0 comments on commit 33983d5

Please sign in to comment.