Skip to content

t0kk35/m0d3l

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

m0d3l


Description

Build, train and test Neural Net Models based using Pytorch. This package builds NN models from the artefacts created with the f3atur3s and eng1n3 packages.

See the notebooks directory for examples.

Example usage

# Define the Model
class FirstModel(mp.BinaryClassifier):
    def __init__(self, model_configuration: mp.ModelConfiguration):
        super(FirstModel, self).__init__(model_configuration)
        self.heads = self.create_heads()
        head_size = sum([h.output_size for h in self.heads])
        self.tail = self.create_tail(head_size)

    def forward(self, x: Tuple[torch.Tensor, ...]) -> Tuple[torch.Tensor,...]:
        o = torch.cat([h(x[i]) for i, h in enumerate(self.heads)], dim=1)
        o = self.tail(o)
        return (o,)

# Create a Model
model = FirstModel(mp.ModelConfiguration.from_tensor_definitions(ti.target_tensor_def))

# Create a trainer.
trainer = mp.Trainer(model, torch.device('cpu'), train_dl, val_dl)
# And an optimizer
optimizer = mp.AdamWOptimizer(model, lr=0.01)
# Run the trainer for 5 epochs
history = trainer.train(5, optimizer)

Requirements

  • pandas
  • numpy
  • numba
  • torch
  • tqdm
  • matplotlib
  • scikit-learn

About

Creating and Training Neural Nets

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published