Skip to content

The study focuses on thyroid nodule segmentation in Oncology Institute images, utilizing Samsung and General Electric datasets. It evaluates U$^2$-Net performance on same-device data and explores U-Net, U-Net 3+, and TransUnet efficacy in handling data heterogeneity, particularly in purely heterogeneous datasets.

License

Notifications You must be signed in to change notification settings

szymciem8/Analysis-of-thyroid-US-images-with-ML

Repository files navigation

Anlysis of thyroid US images with ML

Deep learning machine models are employed for the segmentation of tumors and pathological changes in medical images. This paper presents the results of an analysis, based on selected metrics, regarding the U-Net, U2-Net, U-Net 3+, and TransUnet models. Furthermore, it discusses how the selected models address the issue of data heterogeneity.

Trained models can be downloaded from OneDrive. You have to be member of the Silesian University of Science organization in order to access those models.

Comparison

Samsung on Samsung

Metrics

Metryki U-Net U$^2$-Net U-Net 3+ TransUnet
Focal Tversky 0.278 +- 2.03e-02 0.266 +- 7.24e-03 0.305 +- 6.75e-03 0.316 +- 2.39e-02
Dokładność 0.972 +- 3.73e-03 0.973 +- 1.90e-03 0.969 +- 1.94e-03 0.965 +- 3.73e-03
Średnia dokładność 0.86 +- 1.64e-02 0.864 +- 1.10e-02 0.852 +- 1.20e-02 0.833 +- 1.75e-02
Precyzja 0.729 +- 3.22e-02 0.736 +- 2.22e-02 0.715 +- 2.54e-02 0.677 +- 3.47e-02
Czułość 0.864 +- 1.03e-02 0.881 +- 5.84e-03 0.839 +- 2.32e-02 0.843 +- 2.53e-02
F1/Dice 0.79 +- 2.29e-02 0.801 +- 1.12e-02 0.769 +- 6.76e-03 0.749 +- 2.43e-02
IoU 0.655 +- 3.01e-02 0.669 +- 1.58e-02 0.625 +- 8.81e-03 0.601 +- 3.21e-02
ROC AUC 0.946 +- 6.29e-03 0.988 +- 6.18e-04 0.932 +- 6.76e-03 0.96 +- 5.72e-03

png

ROC curves

png

Predictions examples

png

GE on GE

Metrics

Metryki U-Net U$^2$-Net U-Net 3+ TransUnet
Focal Tversky 0.366 +- 1.40e-02 0.38 +- 7.26e-03 0.359 +- 3.30e-03 0.344 +- 1.22e-02
Dokładność 0.945 +- 3.13e-03 0.947 +- 4.21e-03 0.947 +- 2.08e-03 0.945 +- 6.15e-03
Średnia dokładność 0.8 +- 9.00e-03 0.812 +- 1.43e-02 0.809 +- 8.16e-03 0.805 +- 1.80e-02
Precyzja 0.616 +- 1.74e-02 0.644 +- 2.93e-02 0.634 +- 1.76e-02 0.625 +- 3.75e-02
Czułość 0.807 +- 1.42e-02 0.774 +- 1.09e-02 0.809 +- 1.56e-02 0.845 +- 2.48e-02
F1/Dice 0.699 +- 1.43e-02 0.7 +- 1.37e-02 0.709 +- 4.71e-03 0.713 +- 1.86e-02
IoU 0.538 +- 1.68e-02 0.54 +- 1.62e-02 0.55 +- 5.69e-03 0.555 +- 2.20e-02
ROC AUC 0.895 +- 8.19e-03 0.961 +- 1.60e-03 0.907 +- 5.08e-03 0.938 +- 3.22e-03

png

ROC curves

png

Predictions examples

png

Samsung on GE

Metrics

Metryki U-Net U$^2$-Net U-Net 3+ TransUnet
Focal Tversky 0.572 +- 3.35e-02 0.67 +- 1.99e-02 0.641 +- 6.64e-02 0.615 +- 2.55e-02
Dokładność 0.802 +- 3.52e-02 0.646 +- 3.93e-02 0.663 +- 7.46e-02 0.734 +- 3.98e-02
Średnia dokładność 0.638 +- 2.12e-02 0.587 +- 7.22e-03 0.61 +- 3.72e-02 0.609 +- 1.09e-02
Precyzja 0.291 +- 4.34e-02 0.181 +- 1.49e-02 0.234 +- 7.45e-02 0.229 +- 2.26e-02
Czułość 0.847 +- 2.27e-02 0.94 +- 8.59e-03 0.894 +- 2.72e-02 0.912 +- 1.28e-02
F1/Dice 0.424 +- 4.34e-02 0.303 +- 2.07e-02 0.346 +- 7.94e-02 0.363 +- 2.86e-02
IoU 0.273 +- 3.57e-02 0.179 +- 1.43e-02 0.222 +- 6.59e-02 0.223 +- 2.10e-02
ROC AUC 0.835 +- 1.56e-02 0.908 +- 4.07e-03 0.839 +- 2.54e-02 0.825 +- 1.57e-02

png

ROC curves

png

Predictions examples

png

GE on Samsung

Metrics

Metryki U-Net U$^2$-Net U-Net 3+ TransUnet
Focal Tversky 0.391 +- 2.27e-02 0.434 +- 1.91e-02 0.398 +- 2.74e-02 0.381 +- 1.48e-02
Dokładność 0.965 +- 3.02e-03 0.96 +- 3.40e-03 0.967 +- 1.26e-03 0.962 +- 3.99e-03
Średnia dokładność 0.848 +- 1.47e-02 0.827 +- 1.81e-02 0.867 +- 1.28e-02 0.832 +- 2.12e-02
Precyzja 0.715 +- 2.89e-02 0.675 +- 3.58e-02 0.754 +- 2.75e-02 0.679 +- 4.39e-02
Czułość 0.715 +- 2.41e-02 0.677 +- 2.02e-02 0.694 +- 4.43e-02 0.754 +- 2.96e-02
F1/Dice 0.713 +- 2.22e-02 0.674 +- 2.22e-02 0.717 +- 1.49e-02 0.708 +- 1.72e-02
IoU 0.556 +- 2.72e-02 0.51 +- 2.62e-02 0.559 +- 1.85e-02 0.548 +- 2.03e-02
ROC AUC 0.899 +- 1.81e-02 0.959 +- 7.84e-03 0.866 +- 2.16e-02 0.945 +- 4.32e-03

png

ROC curves

png

Predictions examples

png

Mix on Samsung

Metrics

Metryki U-Net U$^2$-Net U-Net 3+ TransUnet
Focal Tversky 0.316 +- 2.75e-02 0.256 +- 1.41e-02 0.278 +- 6.06e-03 0.254 +- 8.75e-03
Dokładność 0.959 +- 7.47e-03 0.976 +- 1.10e-03 0.97 +- 1.27e-03 0.975 +- 1.43e-03
Średnia dokładność 0.812 +- 2.71e-02 0.879 +- 5.15e-03 0.849 +- 7.37e-03 0.868 +- 7.17e-03
Precyzja 0.633 +- 5.42e-02 0.767 +- 1.05e-02 0.707 +- 1.54e-02 0.744 +- 1.43e-02
Czułość 0.882 +- 1.01e-02 0.875 +- 1.83e-02 0.88 +- 1.38e-02 0.888 +- 7.89e-03
F1/Dice 0.731 +- 3.63e-02 0.817 +- 9.07e-03 0.783 +- 5.91e-03 0.809 +- 9.08e-03
IoU 0.581 +- 4.47e-02 0.691 +- 1.31e-02 0.644 +- 7.90e-03 0.68 +- 1.30e-02
ROC AUC 0.932 +- 4.91e-03 0.989 +- 1.19e-03 0.942 +- 1.24e-02 0.97 +- 2.75e-03

png

ROC curves

png

Mix on GE

Metrics

Metryki U-Net U$^2$-Net U-Net 3+ TransUnet
Focal Tversky 0.386 +- 3.43e-02 0.333 +- 7.39e-03 0.364 +- 9.64e-03 0.322 +- 4.21e-03
Dokładność 0.934 +- 9.97e-03 0.956 +- 2.28e-03 0.947 +- 2.25e-03 0.956 +- 1.94e-03
Średnia dokładność 0.776 +- 2.42e-02 0.837 +- 8.81e-03 0.807 +- 9.20e-03 0.833 +- 7.65e-03
Precyzja 0.568 +- 4.68e-02 0.691 +- 1.84e-02 0.631 +- 1.99e-02 0.681 +- 1.60e-02
Czułość 0.814 +- 3.28e-02 0.812 +- 1.48e-02 0.803 +- 2.36e-02 0.831 +- 1.04e-02
F1/Dice 0.666 +- 3.85e-02 0.745 +- 8.41e-03 0.705 +- 6.68e-03 0.748 +- 6.65e-03
IoU 0.504 +- 4.15e-02 0.594 +- 1.07e-02 0.544 +- 7.92e-03 0.598 +- 8.43e-03
ROC AUC 0.895 +- 1.35e-02 0.969 +- 1.61e-03 0.897 +- 1.90e-02 0.933 +- 6.79e-03

png

ROC curves

png

About

The study focuses on thyroid nodule segmentation in Oncology Institute images, utilizing Samsung and General Electric datasets. It evaluates U$^2$-Net performance on same-device data and explores U-Net, U-Net 3+, and TransUnet efficacy in handling data heterogeneity, particularly in purely heterogeneous datasets.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages