Skip to content

swt-user/LLPAUC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LLPAUC

This is the source code for the LLPAUC. The code references Recbole (https://github.com/RUCAIBox/RecBole)

The candidate loss functions are: CCL, TP_Point_TP, TP_Point_OP, BPR, BCE, softmax

CCL:Cosin Constractive Loss

TP_Point_TP:LLPAUC Loss in our paper

TP_Point_OP:OPAUC Loss in our paper

BPR:Bayesian Personalized Ranking Loss

BCE:Binary Cross-Entropy Loss

softmax:Softmax Cross-Entropy Loss(SCE in our paper)

The candidate datasets are: adressa_clean,adressa_noise,yelp_clean,yelp_noise,amazon_book_clean,amazon_book_noise

In order to reproduce the results reported in our paper, we set the default hyper-parameters for our paper. For example, the command to obtain the LLPAUC results for amazon_book_clean dataset is

python -u run_main.py --dataset=amazon_book_clean --loss=TP_Point_TP

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published