PyThermoDB is a lightweight and user-friendly Python package designed to provide quick access to essential thermodynamic data. Whether you're a student, researcher, or engineer, this package serves as a valuable resource for retrieving thermodynamic properties, equations, and constants from your custom thermodynamic database
(csv files).
- ๐ Handbook Data: The package sources its data from well-established thermodynamics handbooks, ensuring accuracy and reliability (updated regularly).
- ๐ง Custom Thermodynamic Database: It is possible to builtin your own thermodynamic databook for your project.
- ๐งฉ Minimal Dependencies: Built with simplicity in mind, the package has minimal external dependencies, making it easy to integrate into your projects.
- ๐ Open Source: Feel free to explore, contribute, and customize the package according to your needs.
Try PyThermoDB directly in your browser without any installation using Binder. You can find examples regarding the following contents:
- Import Libraries: Import the necessary libraries including pyThermoDB and rich.
- Check Versions: Print the version of pyThermoDB.
- App Initialization: Initialize the pyThermoDB application.
- Databook List: List all available databooks.
- Table List: List all tables in a specific databook.
- Table Info: Get information about a specific table.
- Load Tables: Load and display data and equations from tables.
- Check Component Availability: Check if a component is available in a specific table.
- Build Data: Build data for a specific component from a table.
- Build Equation: Build an equation for a specific component from a table.
Click on any of the following links to launch interactive Jupyter notebooks:
Try PyThermoDB directly in your browser with these interactive examples:
Check out PyThermoDB
live! ๐ PyThermoDB on Streamlit
Install PyThermoDB with pip:
import pyThermoDB as ptdb
# check version
print(ptdb.__version__)
- Databook reference initialization:
# databook reference initialization
tdb = ptdb.init()
- ๐ DATABOOK LIST:
# databook
db_list = tdb.list_databooks()
print(db_list)
- ๐ TABLE LIST:
list_tables(databook_name or databook_id
)
# table list
tb_lists = tdb.list_tables(1)
print(tb_lists)
- โน๏ธ TABLE INFO:
table_info(databook_name or id
, table_name or id
)
# display a table
tb_info = tdb.table_info(1, 2)
print(tb_info)
- ๐ LOAD TABLE DATA/EQUATION:
table_data(databook_name or id
, table_name or id
)
# table load
res_ = tdb.table_data(1, 2)
print(res_)
- ๐ VIEW TABLE CONTENT IN THE BROWSER
table_view(databook_name or id
, table_name or id
)
# install Jinja2
pip install Jinja2
# VIEW table CONTENT
tdb.table_view(1, 2)
- ๐ฅ LOAD TABLES DATA|EQUATION STRUCTURE (before building):
equation_load(databook_name or id
, table_name or id
)
# load equation to check
vapor_pressure_tb = tdb.equation_load(1, 4)
print(vapor_pressure_tb.eq_structure(1))
# load data to check
data_table = tdb.data_load(1, 2)
print(data_table.data_structure())
- ๐ CHECK COMPONENT AVAILABILITY IN A TABLE:
get_component_data(component name
, databook_name or id
, table_name or id
, ...)
# check component availability in the databook and table
comp1 = "carbon Dioxide"
# method 1
# CO2_check_availability = tdb.check_component(comp1, 1, 2)
# method 2:
comp_data = tdb.get_component_data(comp1, 1, 2, dataframe=True)
print(comp_data)
- ๐๏ธ BUILD DATA OBJECT:
build_data(component name
, databook_name or id
, table_name or id
)
# build data
CO2_data = tdb.build_data(comp1, 1, 2)
print(CO2_data.data_structure())
print(CO2_data.get_property(4))
- ๐ BUILD EQUATION OBJECT:
build_equation(component name
, databook_name or id
, table_name or id
)
# build an equation
eq = tdb.build_equation(comp1, 1, 4)
print(eq.args)
res = eq.cal(T=298.15)
print(res*1e-5)
DataTable & EquationTable saved as an object in Carbon Dioxide.pkl
- ๐จ BUILD THERMODB:
# build a thermodb
thermo_db = ptdb.build_thermodb()
print(type(thermo_db))
# version
print(thermo_db.build_version)
# thermodb name
print(thermo_db.thermodb_name)
# * add TableData
thermo_db.add_data('general', comp1_data)
# * add TableEquation
thermo_db.add_data('heat-capacity', comp1_eq)
thermo_db.add_data('vapor-pressure', vapor_pressure_eq)
# add string
# thermo_db.add_data('dHf', {'dHf_IG': 152})
# file name
# thermodb_file_path = os.path.join(os.getcwd(), f'{comp1}')
# save
thermo_db.save(
f'{comp1}', file_path='..\\pyThermoDB\\tests')
- ๐ CHECK THERMODB:
# check all properties and functions registered
print(thermo_db.check_properties())
print(thermo_db.check_functions())
Carbon Dioxide.pkl
can be loaded as:
- ๐ค LOAD THERMODB FILE:
# ref
thermodb_file = 'Carbon Dioxide.pkl'
thermodb_path = os.path.join(os.getcwd(), thermodb_file)
print(thermodb_path)
- ๐ฅ LOAD THERMODB:
# load thermodb
CO2_thermodb = ptdb.load_thermodb(thermodb_path)
print(type(CO2_thermodb))
- โ CHECK THERMODB:
# check all properties and functions registered
print(CO2_thermodb.check())
-
Step 1:
Modify
yml file
by addingCUSTOM-INTEGRAL
. -
Step 2:
Add a name for the new integral body.
-
Step 3:
Add a list containing the integral body.
CUSTOM-INTEGRAL:
Cp/R:
- A1 = parms['a0']*args['T1']
- B1 = (parms['a1']/2)*(args['T1']**2)
- C1 = (parms['a2']/3)*(args['T1']**3)
- D1 = (parms['a3']/4)*(args['T1']**4)
- E1 = (parms['a4']/5)*(args['T1']**5)
- res1 = A1 + B1 + C1 + D1 + E1
- A2 = parms['a0']*args['T2']
- B2 = (parms['a1']/2)*(args['T2']**2)
- C2 = (parms['a2']/3)*(args['T2']**3)
- D2 = (parms['a3']/4)*(args['T2']**4)
- E2 = (parms['a4']/5)*(args['T2']**5)
- res2 = A2 + B2 + C2 + D2 + E2
- res = res2 - res1
- ๐ฌ CHECK AS:
# check custom integral
print(comp1_eq.custom_integral)
# check body
print(comp1_eq.check_custom_integral_equation_body('Cp/R'))
# Cp/R
Cp_cal_custom_integral_Cp__R = comp1_eq.cal_custom_integral(
'Cp/R', T1=298.15, T2=320)
print(Cp_cal_custom_integral_Cp__R)
PyThermoDB allows you to define and use custom databooks and tables for your specific thermodynamic data needs. Here's how you can set up and use a custom databook and table:
- ๐ Define Custom Reference
Check csv
and yml
files to be familiar with the right format!
# Define custom reference
custom_ref = {
'reference': ['nrtl.yml'],
'tables': [
'Non-randomness parameters of the NRTL equation.csv',
'Interaction parameters of the NRTL equation.csv'
]
}
- ๐ List Tables in Databook
# List tables in databook
tb_lists = tdb.list_tables('NRTL', res_format='json')
print(tb_lists)
- ๐ Load Table Data
table_data(databook_name or id
, table_name or id
)
# Load table data
tb_data = tdb.table_data(7, 1)
print(tb_data)
- ๐๏ธ Build ThermoDB for the Custom Reference
# Build ThermoDB
thermo_db = ptdb.build_thermodb()
thermo_db.add_data('nrtl_alpha', nrtl_alpha)
thermo_db.add_data('nrtl_tau', nrtl_tau_eq)
thermo_db.save('thermodb_nrtl_0', file_path='notebooks')
This project is licensed under the MIT License. You are free to use, modify, and distribute this software in your own applications or projects. However, if you choose to use this app in another app or software, please ensure that my name, Sina Gilassi, remains credited as the original author. This includes retaining any references to the original repository or documentation where applicable. By doing so, you help acknowledge the effort and time invested in creating this project.
For any question, contact me on LinkedIn