Skip to content

A user package of LAMMPS software enabling simulations using linearized machine learning potentials

License

Notifications You must be signed in to change notification settings

sekocha/lammps-polymlp-package

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

lammps-polymlp-package

A package of LAMMPS software enabling simulations using polynomial machine learning potentials

Building lammps with lammps-polymlp package

(lammps-polymlp-package is tested using LAMMPS_VERSION "lammps-23Jun2022”)

  1. Copy all the components in the lammps-polymlp-package to the latest lammps source code directory as

    > cp -r lammps-polymlp-package/lib/polymlp $(lammps_src)/lib
    > cp -r lammps-polymlp-package/src/POLYMLP $(lammps_src)/src
    
  2. Add "polymlp" to variable PACKAGE defined in $(lammps_src)/src/Makefile and activate polymlp package as

    > cat $(lammps_src)/src/Makefile
        PACKAGE = \
        adios \
        amoeba \
        ...
        poems \
        polymlp \
        ptm \
        ...
        ml-iap \
        phonon
        ...
    > ulimit -s unlimited
    > cd $(lammps_src)/src
    > make yes-polymlp
    
  3. If necessary, modify compile options and flags in $(lammps_src)/src/MAKE/Makefile.serial and $(lammps_src)/lib/polymlp/Makefile.lammps

  4. Change directory to $(lammps_src)/src and build lammps binary files. (It requires approximately ten minutes to one hour for compiling polymlp_gtinv_data.cpp.)

    > make serial -j 36
    

Machine learning potentials for a wide range of systems can be found in the website. If you use lammps-polymlp package and machine learning potentials in the repository for academic purposes, please cite the following article [1].

[1] A. Seko, "Systematic development of polynomial machine learning potentials for elemental and alloy systems", J. Appl. Phys. 133, 011101 (2023).

Lammps input commands to specify a machine learning potential

The following lammps input commands specify a machine learning potential.

    pair_style  polymlp
    pair_coeff * * polymlp.in Ti Al

About

A user package of LAMMPS software enabling simulations using linearized machine learning potentials

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages