Skip to content

Results for the paper "Association between neighborhood overcrowdedness, multigenerational households, and COVID-19 in New York City" (published in Public Health, 2021)

Notifications You must be signed in to change notification settings

sara-venkatraman/NYC-Housing-COVID19

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Poisson regression models (Table 2 of manuscript)

Sara Venkatraman 1/12/2021

Model setup

First we run a script which reads the syndromic surveillance data, and we also load a few libraries.

# Load script which reads the syndromic surveillance data and sets up the design matrices used for modeling
source("ModelingSetup.R")

# Packages for obtaining robust standard errors and VIFs
library(lmtest);  library(sandwich);  library(car);  library(MASS)

# Packages for spatiotemporal modeling
library(maptools);  library(spdep);  library(INLA)

# Packages for plotting and printing tables
library(ggplot2);  library(gridExtra);  library(knitr)

Now we read in a zip code-level NYC shapefile that will later enable us to construct spatiotemporal models of case counts over time and over 173 zip codes.

## Reading layer `tl_2010_36_zcta510NYC' from data source `/Users/saravenkatraman/Documents/Cornell University (PhD)/Research/COVID-19 Demographics/Paper 1 Surveillance Analysis/Spatiotemporal Model Files/tl_2010_36_zcta510NYC.shp' using driver `ESRI Shapefile'
## Simple feature collection with 226 features and 12 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: 913090.7 ymin: 120053.5 xmax: 1080968 ymax: 283594.7
## projected CRS:  NAD83 / New York Long Island (ftUS)

The next few lines of code produce a dataframe (“design matrix”) of the following form. Below, “Case count” refers to the suspected cases, i.e. the total number of ILI + pneumonia emergency department presentations observed on that day. In this dataframe, both overcrowdedness and multigenerational housing are binned into quartiles.

# Design matrix construction
designResponse.ili <- Concatenate.Zipcode.Data(zctaOrder, "influenza", "2020-03-16", variablesToDiscretize=c("PctOvercrowded", "PctMultigen"), quartile=T)
designResponse.pneu <- Concatenate.Zipcode.Data(zctaOrder, "pneumonia", "2020-03-16", variablesToDiscretize=c("PctOvercrowded", "PctMultigen"), quartile=T)
designResponse <- cbind(designResponse.ili$Count + designResponse.pneu$Count, designResponse.ili[,-1])
colnames(designResponse)[1] <- "Count";  remove(designResponse.ili);  remove(designResponse.pneu)

# Get sum of essential employment percentages
designResponse$PctEssEmpl <- rowSums(designResponse[,18:23])

Define functions for neatly printing the model coefficients and confidence intervals. The first function applies to GLMs and the second applies to INLA models.

Print.Model.Results.GLM <- function(modelGLM, numDecimal) {
  # Get coefficient estimates and confidence intervals. Combine them (along with the)
  # p-value) into one table, called 'modelResults' - results rounded to 'numDecimal'
  modelCoef <- coeftest(modelGLM)
  modelCI <- coefci(modelGLM, vcov=vcovHC(modelGLM, type="HC3"))
  modelResults <- cbind(round(exp(modelCoef[,1]), numDecimal), 
                        modelCoef[,4], 
                        round(exp(modelCI[,1:2]), numDecimal))
  colnames(modelResults)[1:2] <- c("exp(Estimate)", "p-value")
  
  # Create a 1-column table called 'resultsSummary' that stores model results in
  # the following format: "exp(Estimate),  (ciLower, ciUpper)"
  resultsSummary <- matrix("", nrow=nrow(modelResults), ncol=1)
  rownames(resultsSummary) <- rownames(modelResults)
  for(i in 1:nrow(modelResults)) {
    string.i <- paste(modelResults[i,1], "  (", modelResults[i,3], ", ", modelResults[i,4], ")", sep="")
    resultsSummary[i,1] <- string.i
  }
  resultsSummary <- resultsSummary[c(3:nrow(resultsSummary), 2, 1), ]
  return(modelResults)
} 

Print.Model.Results.INLA <- function(modelINLA, numDecimal) {
  # Get coefficient estimates and confidence intervals. Combine them (along with the)
  # p-value) into one table, called 'modelResults' - results rounded to 'numDecimal'
  modelResults <- cbind(round(exp(model5.INLA$summary.fixed[,1]), numDecimal), 
                        model5.INLA$summary.fixed[,2], 
                        round(exp(model5.INLA$summary.fixed[,-c(1:2,4,7)]), numDecimal))
  colnames(modelResults)[1:2] <- c("exp(Estimate)", "SD")
  
  # Create a 1-column table called 'resultsSummary' that stores model results in
  # the following format: "exp(Estimate),  (ciLower, ciUpper)"
  resultsSummary <- matrix("", nrow=nrow(modelResults), ncol=1)
  rownames(resultsSummary) <- rownames(modelResults)
  for(i in 1:nrow(modelResults)) {
    string.i <- paste(modelResults[i,1], "  (", modelResults[i,3], ", ", modelResults[i,4], ")", sep="")
    resultsSummary[i,1] <- string.i
  }
  resultsSummary <- resultsSummary[c(3:nrow(resultsSummary), 2, 1), ]
  return(modelResults)
}

Model 1: Housing-related exposure covariates only (quasi-Poisson GLM)

model1.ILIpneu <- glm(Count ~ Time + PctOvercrowded + PctMultigen + offset(log(Population/10000)), family=quasipoisson, data=designResponse)

# Check variance inflation factors. None need to be removed (based on VIF > 10 criterion)
kable(vif(model1.ILIpneu))
GVIF Df GVIF^(1/(2*Df))
Time 1.000000 1 1.000000
PctOvercrowded 1.432021 3 1.061675
PctMultigen 1.432021 3 1.061675
# Print model results
kable(Print.Model.Results.GLM(model1.ILIpneu, 2))
exp(Estimate) p-value 2.5 % 97.5 %
(Intercept) 0.37 0e+00 0.35 0.39
Time 1.04 0e+00 1.04 1.05
PctOvercrowdedQ2 1.56 0e+00 1.47 1.65
PctOvercrowdedQ3 1.75 0e+00 1.66 1.85
PctOvercrowdedQ4 2.05 0e+00 1.92 2.18
PctMultigenQ2 1.19 1e-07 1.12 1.26
PctMultigenQ3 1.30 0e+00 1.22 1.37
PctMultigenQ4 1.59 0e+00 1.49 1.69

Model 2: Add clinical risk factors for COVID-19 to model 1

model2.ILIpneu <- glm(Count ~ Time + PctOvercrowded + PctMultigen + BPHIGH_CrudePrev + DIABETES_CrudePrev + CHD_CrudePrev + OBESITY_CrudePrev + COPD_CrudePrev + CSMOKING_CrudePrev + offset(log(Population/10000)), family=quasipoisson, data=designResponse)

# Check variance inflation factors. COPD has the largest VIF.
kable(vif(model2.ILIpneu))
GVIF Df GVIF^(1/(2*Df))
Time 1.000000 1 1.000000
PctOvercrowded 2.584312 3 1.171451
PctMultigen 3.535624 3 1.234272
BPHIGH_CrudePrev 19.596931 1 4.426842
DIABETES_CrudePrev 25.024530 1 5.002452
CHD_CrudePrev 21.534671 1 4.640546
OBESITY_CrudePrev 8.007129 1 2.829687
COPD_CrudePrev 42.218345 1 6.497565
CSMOKING_CrudePrev 25.581867 1 5.057852
# Re-fit model without COPD
model2.ILIpneu <- glm(Count ~ Time + PctOvercrowded + PctMultigen + BPHIGH_CrudePrev + DIABETES_CrudePrev + CHD_CrudePrev + OBESITY_CrudePrev + CSMOKING_CrudePrev + offset(log(Population/10000)), family=quasipoisson, data=designResponse)

# Check variance inflation factors. Hypertension now has the largest VIF.
kable(vif(model2.ILIpneu))
GVIF Df GVIF^(1/(2*Df))
Time 1.000000 1 1.000000
PctOvercrowded 2.493952 3 1.164523
PctMultigen 3.385975 3 1.225408
BPHIGH_CrudePrev 11.208735 1 3.347945
DIABETES_CrudePrev 9.748967 1 3.122333
CHD_CrudePrev 4.412565 1 2.100611
OBESITY_CrudePrev 8.007108 1 2.829683
CSMOKING_CrudePrev 6.169262 1 2.483800
# Re-fit model without COPD and hypertension
model2.ILIpneu <- glm(Count ~ Time + PctOvercrowded + PctMultigen + DIABETES_CrudePrev + CHD_CrudePrev + OBESITY_CrudePrev + CSMOKING_CrudePrev + offset(log(Population/10000)), family=quasipoisson, data=designResponse)

# Check variance inflation factors. No more variables need to be removed.
kable(vif(model2.ILIpneu))
GVIF Df GVIF^(1/(2*Df))
Time 1.000000 1 1.000000
PctOvercrowded 1.973983 3 1.120015
PctMultigen 3.519230 3 1.233317
DIABETES_CrudePrev 6.924940 1 2.631528
CHD_CrudePrev 3.155821 1 1.776463
OBESITY_CrudePrev 3.406973 1 1.845799
CSMOKING_CrudePrev 4.520681 1 2.126189
# Print model results
kable(Print.Model.Results.GLM(model2.ILIpneu, 2))
exp(Estimate) p-value 2.5 % 97.5 %
(Intercept) 0.50 0.0000000 0.44 0.57
Time 1.04 0.0000000 1.04 1.05
PctOvercrowdedQ2 1.22 0.0000000 1.15 1.30
PctOvercrowdedQ3 1.47 0.0000000 1.39 1.56
PctOvercrowdedQ4 1.80 0.0000000 1.68 1.92
PctMultigenQ2 1.08 0.0399473 1.00 1.15
PctMultigenQ3 1.09 0.0281987 1.01 1.18
PctMultigenQ4 1.03 0.5593874 0.93 1.12
DIABETES_CrudePrev 1.16 0.0000000 1.14 1.18
CHD_CrudePrev 0.72 0.0000000 0.69 0.74
OBESITY_CrudePrev 1.01 0.0000004 1.01 1.02
CSMOKING_CrudePrev 0.99 0.3003368 0.98 1.01

Model 3: Add socioeconomic covariates to model 1

model3.ILIpneu <- glm(Count ~ Time + PctOvercrowded + PctMultigen + PctWhite + PctBelowPovThresh + MedianIncome + PctEssEmpl + PopDensity + offset(log(Population/10000)), family=quasipoisson, data=designResponse)

# Check variance inflation factors. No variables need to be removed.
kable(vif(model3.ILIpneu))
GVIF Df GVIF^(1/(2*Df))
Time 1.000000 1 1.000000
PctOvercrowded 2.448803 3 1.160982
PctMultigen 4.241565 3 1.272295
PctWhite 2.933174 1 1.712651
PctBelowPovThresh 5.209530 1 2.282439
MedianIncome 5.831066 1 2.414760
PctEssEmpl 2.123767 1 1.457315
PopDensity 1.615957 1 1.271203
# Print model results
kable(Print.Model.Results.GLM(model3.ILIpneu, 2))
exp(Estimate) p-value 2.5 % 97.5 %
(Intercept) 2.26 0.0000000 1.63 3.13
Time 1.04 0.0000000 1.04 1.05
PctOvercrowdedQ2 1.37 0.0000000 1.28 1.45
PctOvercrowdedQ3 1.43 0.0000000 1.34 1.52
PctOvercrowdedQ4 1.62 0.0000000 1.50 1.75
PctMultigenQ2 1.02 0.6419374 0.95 1.10
PctMultigenQ3 1.09 0.0408901 1.01 1.18
PctMultigenQ4 1.29 0.0000001 1.16 1.42
PctWhite 1.00 0.0000000 0.99 1.00
PctBelowPovThresh 0.99 0.0000000 0.98 0.99
MedianIncome 1.00 0.0000000 1.00 1.00
PctEssEmpl 0.98 0.0000000 0.97 0.99
PopDensity 1.00 0.2630634 1.00 1.00

Model 4: Add both clinical and socioeconomic covariates to model 1

model4.ILIpneu <- glm(Count ~ Time + PctOvercrowded + PctMultigen + BPHIGH_CrudePrev + DIABETES_CrudePrev + CHD_CrudePrev + OBESITY_CrudePrev + COPD_CrudePrev + CSMOKING_CrudePrev + PctWhite  + PctBelowPovThresh + MedianIncome + PctEssEmpl + PopDensity + offset(log(Population/10000)), family=quasipoisson, data=designResponse)

# Check variance inflation factors. COPD has the largest VIF.
kable(vif(model4.ILIpneu))
GVIF Df GVIF^(1/(2*Df))
Time 1.000000 1 1.000000
PctOvercrowded 3.846854 3 1.251750
PctMultigen 6.377466 3 1.361783
BPHIGH_CrudePrev 34.934980 1 5.910582
DIABETES_CrudePrev 31.422820 1 5.605606
CHD_CrudePrev 25.819671 1 5.081306
OBESITY_CrudePrev 13.682975 1 3.699051
COPD_CrudePrev 44.711002 1 6.686629
CSMOKING_CrudePrev 25.237238 1 5.023668
PctWhite 10.953861 1 3.309662
PctBelowPovThresh 11.427916 1 3.380520
MedianIncome 9.110909 1 3.018428
PctEssEmpl 2.906632 1 1.704885
PopDensity 2.275761 1 1.508563
# Re-fit model without COPD
model4.ILIpneu <- glm(Count ~ Time + PctOvercrowded + PctMultigen + BPHIGH_CrudePrev + DIABETES_CrudePrev + CHD_CrudePrev + OBESITY_CrudePrev + CSMOKING_CrudePrev + PctWhite + PctBelowPovThresh + MedianIncome + PctEssEmpl + PopDensity + offset(log(Population/10000)), family=quasipoisson, data=designResponse)

# Check variance inflation factors. Hypertension now has the largest VIF.
kable(vif(model4.ILIpneu))
GVIF Df GVIF^(1/(2*Df))
Time 1.000000 1 1.000000
PctOvercrowded 3.741625 3 1.245977
PctMultigen 6.076750 3 1.350865
BPHIGH_CrudePrev 22.335040 1 4.725996
DIABETES_CrudePrev 19.144007 1 4.375387
CHD_CrudePrev 11.228197 1 3.350850
OBESITY_CrudePrev 12.921141 1 3.594599
CSMOKING_CrudePrev 7.724030 1 2.779214
PctWhite 10.708772 1 3.272426
PctBelowPovThresh 10.301103 1 3.209533
MedianIncome 9.039144 1 3.006517
PctEssEmpl 2.827104 1 1.681399
PopDensity 2.242667 1 1.497554
# Re-fit model without COPD and hypertension
model4.ILIpneu <- glm(Count ~ Time + PctOvercrowded + PctMultigen + DIABETES_CrudePrev + CHD_CrudePrev + OBESITY_CrudePrev + CSMOKING_CrudePrev + PctWhite  + PctBelowPovThresh + MedianIncome + PctEssEmpl + PopDensity + offset(log(Population/10000)), family=quasipoisson, data=designResponse)

# Check variance inflation factors. Diabetes now has the largest VIF.
kable(vif(model4.ILIpneu))
GVIF Df GVIF^(1/(2*Df))
Time 1.000000 1 1.000000
PctOvercrowded 2.946263 3 1.197325
PctMultigen 5.636454 3 1.334036
DIABETES_CrudePrev 19.141963 1 4.375153
CHD_CrudePrev 4.798823 1 2.190622
OBESITY_CrudePrev 4.608372 1 2.146712
CSMOKING_CrudePrev 7.704025 1 2.775613
PctWhite 7.334862 1 2.708295
PctBelowPovThresh 9.114278 1 3.018986
MedianIncome 8.906441 1 2.984366
PctEssEmpl 2.845184 1 1.686767
PopDensity 1.952700 1 1.397390
# Re-fit model without COPD, hypertension, and diabetes
model4.ILIpneu <- glm(Count ~ Time + PctOvercrowded + PctMultigen + CHD_CrudePrev + OBESITY_CrudePrev + CSMOKING_CrudePrev + PctWhite  + PctBelowPovThresh + MedianIncome + PctEssEmpl + PopDensity + offset(log(Population/10000)), family=quasipoisson, data=designResponse)

# Check variance inflation factors. No more variables need to be removed.
kable(vif(model4.ILIpneu))
GVIF Df GVIF^(1/(2*Df))
Time 1.000000 1 1.000000
PctOvercrowded 2.940120 3 1.196908
PctMultigen 5.494162 3 1.328363
CHD_CrudePrev 2.361142 1 1.536601
OBESITY_CrudePrev 4.401103 1 2.097881
CSMOKING_CrudePrev 7.489049 1 2.736613
PctWhite 3.324916 1 1.823435
PctBelowPovThresh 8.816106 1 2.969193
MedianIncome 8.326959 1 2.885647
PctEssEmpl 2.578324 1 1.605716
PopDensity 2.003799 1 1.415556
# Print model results
kable(Print.Model.Results.GLM(model4.ILIpneu, 2))
exp(Estimate) p-value 2.5 % 97.5 %
(Intercept) 21.88 0.0000000 14.50 33.01
Time 1.04 0.0000000 1.04 1.05
PctOvercrowdedQ2 1.21 0.0000000 1.14 1.29
PctOvercrowdedQ3 1.43 0.0000000 1.34 1.53
PctOvercrowdedQ4 1.57 0.0000000 1.45 1.70
PctMultigenQ2 1.17 0.0000302 1.09 1.26
PctMultigenQ3 1.37 0.0000000 1.26 1.50
PctMultigenQ4 1.53 0.0000000 1.39 1.69
CHD_CrudePrev 0.75 0.0000000 0.73 0.78
OBESITY_CrudePrev 1.03 0.0000000 1.03 1.04
CSMOKING_CrudePrev 0.97 0.0001401 0.96 0.99
PctWhite 1.00 0.7064446 1.00 1.00
PctBelowPovThresh 0.97 0.0000000 0.97 0.98
MedianIncome 1.00 0.0000000 1.00 1.00
PctEssEmpl 0.96 0.0000000 0.95 0.97
PopDensity 1.00 0.4256017 1.00 1.00

Model 5: Bayesian spatiotemporal model, using model 4 covariates

# Add zip code ID number to design matrix (needed for spatial and temporal random effects)
zipcodeID <- sort(rep(1:length(allZipcodes), 30))
designResponse$ZipID <- zipcodeID
designResponse$ZipID2 <- zipcodeID

# Construct spatiotemporal model using same set of covariates in (reduced) model 4
model5.INLAformula <- Count ~ 1 + f(ZipID, model="bym", offset(Population/10000), graph=NYCadj) + f(ZipID2, Time, model="rw1") + Time + PctOvercrowded + PctMultigen + CHD_CrudePrev + OBESITY_CrudePrev + CSMOKING_CrudePrev + PctWhite + PctBelowPovThresh + MedianIncome + PctEssEmpl + PopDensity
model5.INLA <- inla(model5.INLAformula, family="poisson", data=designResponse, control.compute=list(dic=TRUE,cpo=TRUE))

# Print model results
kable(Print.Model.Results.INLA(model5.INLA, 2))
exp(Estimate) SD 0.025quant 0.975quant mode
(Intercept) 13.04 0.7808933 2.81 60.30 13.07
Time 1.04 0.0008200 1.04 1.04 1.04
PctOvercrowdedQ2 1.21 0.1268922 0.94 1.55 1.21
PctOvercrowdedQ3 1.17 0.1367633 0.90 1.53 1.18
PctOvercrowdedQ4 1.25 0.2022859 0.84 1.86 1.25
PctMultigenQ2 1.46 0.1624302 1.06 2.01 1.46
PctMultigenQ3 1.93 0.1870050 1.33 2.78 1.93
PctMultigenQ4 1.87 0.2217379 1.21 2.89 1.88
CHD_CrudePrev 0.90 0.0557072 0.80 1.00 0.90
OBESITY_CrudePrev 0.99 0.0147861 0.96 1.02 0.99
CSMOKING_CrudePrev 1.09 0.0389113 1.01 1.18 1.09
PctWhite 1.00 0.0034791 0.99 1.00 1.00
PctBelowPovThresh 0.95 0.0126772 0.93 0.98 0.96
MedianIncome 1.00 0.0000028 1.00 1.00 1.00
PctEssEmpl 0.98 0.0142962 0.95 1.00 0.98
PopDensity 1.00 0.0000018 1.00 1.00 1.00

About

Results for the paper "Association between neighborhood overcrowdedness, multigenerational households, and COVID-19 in New York City" (published in Public Health, 2021)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages