Visualized how the prior distribution changes into the target distribution.
The prior distribution used in this code is N(0,I) and the target distribution is eclipse-shaped.
Double moon version
NormalizingFlow(
(layers): ModuleList(
(0-9): 10 x CouplingLayer(
(s): Sequential(
(0): Linear(in_features=2, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=1, bias=True)
(5): Tanh()
)
(t): Sequential(
(0): Linear(in_features=2, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=1, bias=True)
)
)
)
)