Skip to content

rrawatt/automated-portfolio-optimizer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Portfolio Optimization and Management Framework

This Python framework provides a modular approach to portfolio optimization, risk management, and performance evaluation. It includes various optimization techniques, risk-adjusted metrics, and visualization tools for financial portfolio analysis.

Features

  • Portfolio Optimization: Mean-Variance Optimization, Risk Parity, Minimum Variance, and more.
  • Risk Management: VaR, CVaR, Sharpe Ratio, and other risk-adjusted performance metrics.
  • Backtesting: Evaluate historical performance with benchmark comparisons.
  • Visualization Tools: Efficient frontier plotting, risk-return scatter plots, and asset allocation charts.
  • Modular Design: Easily extendable for custom optimization strategies.

Command using csv: python main.py --data sample.csv --tickers AAPL NVDA MSFT --riskfree 0.01 --plots --backtest --sensitivity --llm

Command using tickers: python main.py --tickers AAPL NVDA MSFT --start 2020-04-12 --end 2024-04-12 --riskfree 0.01 --plots --backtest --sensitivity -llm

Command to run Frontend: python app.py

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published