Skip to content

phoebe-team/phoebe

Folders and files

NameName
Last commit message
Last commit date
Dec 27, 2024
Dec 11, 2020
Nov 28, 2024
Apr 26, 2024
Dec 27, 2024
Nov 28, 2024
Dec 27, 2024
Oct 16, 2023
Jul 28, 2021
Oct 4, 2023
Jan 3, 2024
Nov 28, 2024
Aug 12, 2024
Dec 29, 2023
Feb 25, 2020
Nov 28, 2024
Aug 19, 2020

Repository files navigation

Build and Test Documentation Status

Phoebe

A high-performance framework for solving phonon and electron Boltzmann transport equations

Phoebe is an open-source code for the ab-initio computation of electron and phonon transport properties of crystalline materials.

It is designed to take advantage of HPC systems via MPI-OpenMP hybrid parallelism, memory-distributed computing via ScaLAPACK, and GPU accelerated calculation of scattering rates.

For more details, see:

  • Phoebe: a high-performance framework for solving phonon and electron Boltzmann transport equations.
    A. Cepellotti, J. Coulter, A. Johansson, N. S. Fedorova, B. Kozinsky. (2022).
    DOI:10.1088/2515-7639/ac86f6.

Tutorials, documentation of functionality and underlying theory can be found at:

For further questions and feature requests, please post on the discussions page for the git repo. If you feel you've found a bug or seen some unexpected behavior, please let us know by opening a git issue.


Current functionalities

Electronic Transport

  • Electron-phonon and phonon-electron scattering rates by Wannier interpolation
  • Electron-phonon scattering within the electron-phonon averaged (EPA) approximation
  • Electronic transport coefficients (mobility, conductivity, thermal conductivity, and Seebeck coefficient)

Phonon Transport

  • Phonon (lattice) thermal conductivity, including:
    • 3-phonon scattering from thirdOrder.py/ShengBTE or Phono3py force constants
    • Boundary, isotope, and phonon-electron scattering contributions
    • Lattice thermal conductivity calculations including both ph-ph and ph-el scattering

And more...

  • BTE solutions by RTA, iterative, variational, and relaxon solvers
  • Calculation of electron and phonon linewidths or relaxation times on a path
  • Wigner transport equation correction for electrons and phonons
  • Hydrodynamic transport properties (viscosity) for electrons and phonons