Skip to content
/ corc Public
forked from ExpediaGroup/corc

An ORC File Scheme for the Cascading data processing platform.

License

Notifications You must be signed in to change notification settings

patduin/corc

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

   O~~~   O~~    O~ O~~~   O~~~
 O~~    O~~  O~~  O~~    O~~   
O~~    O~~    O~~ O~~   O~~    
 O~~    O~~  O~~  O~~    O~~   
   O~~~   O~~    O~~~      O~~~

Use corc to read and write data in the Optimized Row Columnar (ORC) file format in your Cascading applications. The reading of ACID datasets is also supported.

#Start using You can obtain corc from Maven Central :

Maven Central

##Hive Dependencies

Corc is built with Hive 1.0.0. Several dependencies will need to be included when using Corc:

<dependency>
  <groupId>org.apache.hive</groupId>
  <artifactId>hive-exec</artifactId>
  <version>1.0.0</version>
  <classifier>core</classifier>
</dependency>
<dependency>
  <groupId>org.apache.hive</groupId>
  <artifactId>hive-serde</artifactId>
  <version>1.0.0</version>
</dependency>
<dependency>
  <groupId>com.esotericsoftware.kryo</groupId>
  <artifactId>kryo</artifactId>
  <version>2.22</version>
</dependency>
<dependency>
  <groupId>com.google.protobuf</groupId>
  <artifactId>protobuf-java</artifactId>
  <version>2.5.0</version>
</dependency>

#Overview ##Supported types

HiveCascading/Java
STRINGString
BOOLEANBoolean
TINYINTByte
SMALLINTShort
INTInteger
BIGINTLong
FLOATFloat
DOUBLEDouble
TIMESTAMPjava.sql.Timestamp
DATEjava.sql.Date
BINARYbyte[]
CHARString (HiveChar)
VARCHARString (HiveVarchar)
DECIMALBigDecimal (HiveDecimal)
ARRAYList<Object>
MAPMap<Object, Object>
STRUCTList<Object>
UNIONTYPESub-type

##Constructing an OrcFile instance

OrcFile provides two public constructors; one for sourcing and one for sinking. However, these are provided to be more flexible for others who may wish to extend the class. It is advised to construct an instance via the SourceBuilder and SinkBuilder classes.

###SourceBuilder

Create a builder:

SourceBuilder builder = OrcFile.source();

Specify the fields that should be read. If the declared schema is a subset of the complete schema, then column projection will occur:

builder.declaredFields(fields);
// or
builder.columns(structTypeInfo);
// or
builder.columns(structTypeInfoString);

Specify the complete schema of the underlying ORC Files. This is only required for reading ORC Files that back a transactional Hive table. The default behaviour should be to obtain the schema from the ORC Files being read:

builder.schemaFromFile();
// or
builder.schema(fields);
// or
builder.schema(structTypeInfo);
// or
builder.schema(structTypeInfoString);

ORC Files support predicate pushdown. This allows whole row groups to be skipped if they do not contain any rows that match the given SearchArgument:

Fields message = new Fields("message", String.class);
SearchArgument searchArgument = SearchArgumentFactory.newBuilder()
    .startAnd()
    .equals(message, "hello")
    .end()
    .build();

builder.searchArgument(searchArgument);

When reading ORC Files that back a transactional Hive table, include the VirtualColumn#ROWID ("ROW__ID") virtual column. The column will be prepended to the record's Fields:

builder.prependRowId();

Finally, build the OrcFile:

OrcFile orcFile = builder.build();

###SinkBuilder

OrcFile orcFile = OrcFile.sink()
    .schema(schema)
    .build();

The schema parameter can be one of Fields, StructTypeInfo or the String representation of the StructTypeInfo. When providing a Fields instance, care must be taken when deciding how best to specify the types as there is no one-to-one bidirectional mapping between Cascading types and Hive types. The TypeInfo is able to represent richer, more complex types. Consider your ORC File schema and the mappings to Fields types carefully.

Constructing a StructTypeInfo instance

List<String> names = new ArrayList<>();
names.add("col0");
names.add("col1");

List<TypeInfo> typeInfos = new ArrayList<>();
typeInfos.add(TypeInfoFactory.stringTypeInfo);
typeInfos.add(TypeInfoFactory.longTypeInfo);

StructTypeInfo structTypeInfo = (StructTypeInfo) TypeInfoFactory.getStructTypeInfo(names, typeInfos);

or...

String typeString = "struct<col0:string,col1:bigint>";

StructTypeInfo structTypeInfo = (StructTypeInfo) TypeInfoUtils.getTypeInfoFromTypeString(typeString);

or, via the convenience builder...

StructTypeInfo structTypeInfo = new StructTypeInfoBuilder()
    .add("col0", TypeInfoFactory.stringTypeInfo)
    .add("col1", TypeInfoFactory.longTypeInfo)
    .build();

##Reading transactional Hive tables Corc also supports the reading of ACID datasets that underpin transactional Hive tables. However, for this to work effectively with an active Hive table you must provide your own lock management. We intend to make this functionality available in the cascading-hive project. When reading the data you may optionally include the virtual RecordIdentifer column, also known as the ROW__ID column, with one of the following approaches:

  1. Add a field named 'ROW__ID' to your Fields definition. This must be of type org.apache.hadoop.hive.ql.io.RecordIdentifier. For convenience you can use the constant OrcFile#ROW__ID with some fields arithmetic: Fields myFields = Fields.join(OrcFile.ROW__ID, myFields);.
  2. Use the OrcFile.source().prependRowId() option. Be sure to exclude the RecordIdentifer column from your typeInfo instance. The ROW__ID field will be added to your tuple stream automatically.

##Usage OrcFile can be used with Hfs, just like TextDelimited.

OrcFile orcFile = ...
String path = ...
Hfs hfs = new Hfs(orcFile, path);

#Credits

Created by Dave Maughan & Elliot West, with thanks to: Patrick Duin, James Grant & Adrian Woodhead.

#Legal This project is available under the Apache 2.0 License.

Copyright 2015 Expedia Inc.

About

An ORC File Scheme for the Cascading data processing platform.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 100.0%