Inspired by DeepMind’s AlphaEvolve coding agent—this project applies the same evolutionary-LLM principles to financial markets.
Autonomously discovers and back‑tests high‑performing algorithmic‑trading strategies using evolutionary LLM prompts, Backtrader, and the Papers‑With‑Backtest data ecosystem.
Layer | Highlights |
---|---|
Data | Zero‑setup loader for any Papers‑With‑Backtest dataset (pwb_toolbox ) + caching to Feather |
Strategies | Seed templates with EVOLVE‑BLOCK markers that the LLM mutates |
Evaluator | Deterministic Backtrader walk‑forward, JSON KPIs (Sharpe, CAGR, Calmar, DD) |
LLM Engine | OpenAI o3 structured‑output chat → JSON diff/patch system |
Evolution | Async controller, SQLite hall‑of‑fame, optional MAP‑Elites niches |
Dashboard | (optional) Streamlit live view of metrics & equity curves |
# clone and install in editable mode
$ git clone https://github.com/paperswithbacktest/pwb-alphaevolve.git
$ cd pwb-alphaevolve
$ pip install -e .
# set your OpenAI key (model "o3" required)
$ export OPENAI_API_KEY=sk-...
# set your Papers‑With‑Backtest dataset (e.g. "paperswithbacktest/Stocks-Daily-Price")
$ export HF_ACCESS_TOKEN=hf_
# launch the evolution controller (infinite loop)
$ python scripts/run_controller.py
$ streamlit run scripts/dashboard.py
The dashboard uses Streamlit to visualize the evolution process and back‑test results.
alpha_trader/
├── data/ # loaders & helpers on top of pwb_toolbox
├── strategies/ # seed strategies (EVOLVE‑BLOCK markers)
├── evaluator/ # Backtrader KPIs & walk‑forward
├── llm_engine/ # prompt builder + OpenAI client
├── evolution/ # controller, patching, islands
└── store/ # SQLite persistence
scripts/ # CLI entry‑points
Python ≥ 3.10 required.
pip install pwb-alphaevolve
Or install the bleeding‑edge version:
pip install git+https://github.com/your‑org/pwb-alphaevolve.git
- pwb-toolbox
- pwb-backtrader
- backtrader ≥ 1.9
- openai ≥ 1.0 (structured output)
- tqdm, pandas, numpy, pydantic
(See pyproject.toml
for the full list.)
- Fork the repo & create your feature branch (
git checkout -b feat/new-feature
). - Commit your changes (
git commit -m 'feat: add something'
). - Push to the branch (
git push origin feat/new-feature
). - Open a Pull Request.
Please run black
+ ruff
before submitting.
MIT © 2025 Contributors