Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
patham9 authored Jul 3, 2022
1 parent dce0eab commit 965cb3d
Showing 1 changed file with 2 additions and 1 deletion.
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

Implementation of a Non-Axiomatic Reasoning System [6], a general-purpose reasoner that adapts under the Assumption of Insufficient Knowledge and Resources [7].

This is a completely new platform and not branched from the existing OpenNARS codebase. The ONA (OpenNARS for Applications) system [1] takes the logic and conceptual ideas of OpenNARS, the event handling and procedure learning capabilities of ANSNA [2, 3], and the control model from ALANN [4]. The system is written in C, is more capable than our previous implementations in terms of reasoning performance, and has also been experimentally compared with Reinforcement Learning [5, 6] and means-end reasoning approaches such as BDI models [6]. Additionally, it has become the core reasoning component of a system assisting first responders (Trusted and explainable Artificial Intelligence for Saving Lives, [6]) while driving and completing their mission. This was done in cooperation with NASA Jet Propulsion Laboratory. Also it has been tried for real-time traffic surveillance in cooperation with Cisco Systems [7]. Last, initial experiments for using the system for autonomous robots have been carried out [6], and more is yet to come.
This is a completely new platform and not branched from the existing OpenNARS codebase. The ONA (OpenNARS for Applications) system [1] takes the logic and conceptual ideas of OpenNARS, the event handling and procedure learning capabilities of ANSNA [2, 3] and 20NAR1 [11], and the control model from ALANN [4]. The system is written in C, is more capable than our previous implementations in terms of reasoning performance, and has also been experimentally compared with Reinforcement Learning [5, 6] and means-end reasoning approaches such as BDI models [6]. Additionally, it has become the core reasoning component of a system assisting first responders (Trusted and explainable Artificial Intelligence for Saving Lives, [6]) while driving and completing their mission. This was done in cooperation with NASA Jet Propulsion Laboratory. Also it has been tried for real-time traffic surveillance in cooperation with Cisco Systems [7]. Last, initial experiments for using the system for autonomous robots have been carried out [6], and more is yet to come.

The ONA implementation has been developed with a pragmatic mindset. The focus on the design has been to implement the 'existing' theory [8, 9] as effectively as possible and make firm decisions rather than keep as many options open as possible. This has led to some small conceptual differences to OpenNARS [10] which was developed for research purposes.

Expand Down Expand Up @@ -119,4 +119,5 @@ Google discussion group: https://groups.google.com/forum/#!forum/open-nars

[10] Hammer, P., Lofthouse, T., & Wang, P. (2016, July). [The OpenNARS implementation of the non-axiomatic reasoning system](https://cis.temple.edu/~pwang/Publication/OpenNARS.pdf). In International conference on artificial general intelligence (pp. 160-170). Springer, Cham.

[11] Wünsche, R. (2021, October). 20NAR1-An Alternative NARS Implementation Design. In International Conference on Artificial General Intelligence (pp. 283-291). Springer, Cham.

0 comments on commit 965cb3d

Please sign in to comment.