This repository provides developmental libraries and CLI tools for Open Datacube.
- AWS S3 tools
- CLIs for using ODC data from AWS S3 and SQS
- Utilities for data visualizations in notebooks
- Experiments on optimising Rasterio usage on AWS S3
Full list of libraries, and install instructions:
odc.uitools for data visualization in notebook/labodc.iocommon IO utilities, used by apps mainlyodc-cloud[ASYNC,AZURE,THREDDS]cloud crawling support packageodc.awsAWS/S3 utilities, used by apps mainlyodc.aiofaster concurrent fetching from S3 with async, used by appsodc-cloud[ASYNC]odc.{thredds,azure}internal libs for cloud IOodc-cloud[THREDDS,AZURE]
odc.statslarge scale processing framework (Moved to odc-stats)odc.stacSTAC to ODC conversion tools (Moved to odc-stac)odc.dscacheexperimental key-value store wherekey=UUID,value=Dataset(moved to odc-dscache)
Libraries and applications in this repository are published to PyPI, and can be installed
with pip like so:
pip install \
odc-ui \
odc-io \
odc-cloud[ASYNC]
Some odc-tools are available via conda from the conda-forge channel.
conda install -c conda-forge odc-apps-dc-tools odc-io odc-cloud
Cloud tools depend on the aiobotocore package, which depends on specific
versions of botocore. Another package we use, boto3, also depends on
specific versions of botocore. As a result, having both aiobotocore and
boto3 in one environment can be a bit tricky. The way to solve this
is to install aiobotocore[awscli,boto3] before anything else, which will install
compatible versions of boto3 and awscli into the environment.
pip install -U "aiobotocore[awscli,boto3]==1.3.3"
# OR for conda setups
conda install "aiobotocore==1.3.3" boto3 awscli
- For cloud (AWS only)
pip install odc-apps-dc-tools - For cloud (AZURE, GCP, THREDDS and AWS)
pip install odc-apps-dc-tools[AZURE,GCP,THREDDS] - For
dc-index-from-tar(indexing to datacube from tar archive)pip install odc-apps-dc-tools
s3-findlist S3 bucket with wildcards3-to-tarfetch documents from S3 and dump them to a tar archivegs-to-tarsearch GS for documents and dump them to a tar archivedc-index-from-tarread yaml documents from a tar archive and add them to datacube
Example:
#!/bin/bash
s3_src='s3://dea-public-data/L2/sentinel-2-nrt/**/*.yaml'
s3-find "${s3_src}" | \
s3-to-tar | \
dc-index-from-tar --env s2 --ignore-lineageFastest way to list regularly placed files is to use fixed depth listing:
#!/bin/bash
# only works when your metadata is same depth and has fixed file name
s3_src='s3://dea-public-data/L2/sentinel-2-nrt/S2MSIARD/*/*/ARD-METADATA.yaml'
s3-find --skip-check "${s3_src}" | \
s3-to-tar | \
dc-index-from-tar --env s2 --ignore-lineageWhen using Google Storage:
#!/bin/bash
# Google Storage support
gs-to-tar --bucket data.deadev.com --prefix mangrove_cover
dc-index-from-tar --protocol gs --env mangroves --ignore-lineage metadata.tar.gzThe following steps are used in the GitHub Actions workflow main.yml
# install all packages in edit mode
./scripts/dev-install.sh --extra tests
# setup database for testing
./scripts/setup-test-db.sh
# run test
echo "Running Tests"
uv run pytest --cov=. \
--cov-report=html \
--cov-report=xml:coverage.xml \
--timeout=30 \
libs apps- Manually edit
{lib,app}/{pkg}/odc/{pkg}/_version.pyfile to increase version number - Merge changes to the
developbranch via a Pull Request - Fast-forward the
pypi/publishbranch to matchdevelop - Push to GitHub
Steps 3 and 4 can be done by an authorized user with
./scripts/sync-publish-branch.sh script.
Publishing to PyPi happens automatically when changes are
pushed to the protected pypi/publish branch. Only members of Open Datacube
Admins group have the
permission to push to this branch.