Skip to content

[Feature] Support 6DofPoseEstimation #2266

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 15 commits into
base: dev-1.x
Choose a base branch
from
116 changes: 116 additions & 0 deletions projects/6DofPose/demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
import os
import numpy as np
from utils import *
import argparse
import torch
import matplotlib.pyplot as plt

import mmengine
import mmcv

from mmengine.registry import init_default_scope
from mmpose.apis import inference_topdown
from mmpose.apis import init_model as init_pose_estimator
from mmpose.structures import merge_data_samples
from mmpose.evaluation.functional import nms

from mmdet.apis import inference_detector, init_detector


def predict(image_path):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

detector = init_detector(
'/home/liuyoufu/code/mmpose-openmmlab/mmpose/work_dirs/rtmdet_tiny_ape/rtmdet_tiny_ape.py',
'/home/liuyoufu/code/mmpose-openmmlab/mmpose/work_dirs/rtmdet_tiny_ape/best_coco_bbox_mAP_epoch_90.pth',
device=device)

pose_estimator = init_pose_estimator(
'/home/liuyoufu/code/mmpose-openmmlab/mmpose/work_dirs/rtmpose-s_ape/rtmpose-s_ape.py',
'/home/liuyoufu/code/mmpose-openmmlab/mmpose/work_dirs/rtmpose-s_ape/best_PCK_epoch_240.pth',
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Would you like to share the config files and model checkpoints so that we can play this demo?

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for your review, I will gradually improve this pull request.

device=device,
cfg_options={'model': {'test_cfg': {'output_heatmaps': True}}})

init_default_scope(detector.cfg.get('default_scope', 'mmdet'))
detect_result = inference_detector(detector, image_path)
CONF_THRES = 0.5

pred_instance = detect_result.pred_instances.cpu().numpy()
bboxes = np.concatenate((pred_instance.bboxes, pred_instance.scores[:, None]), axis=1)
bboxes = bboxes[np.logical_and(pred_instance.labels == 0, pred_instance.scores > CONF_THRES)]
bboxes = bboxes[nms(bboxes, 0.3)][:, :4].astype('int')

pose_results = inference_topdown(pose_estimator, image_path, bboxes)
data_samples = merge_data_samples(pose_results)
keypoints = data_samples.pred_instances.keypoints.astype('int')

return keypoints


def parse_args():
parser = argparse.ArgumentParser(description='demo')
parser.add_argument('--image-path', help='image path')
parser.add_argument('--id', type=str, help='object id, for example: 01')
args = parser.parse_args()
return args


def main():
args = parse_args()
image_path = args.image_path
obj_id = args.id

# 根据图像文件路径,划分物体id 根目录 与 图像名称
file_name = os.path.basename(image_path)
root_path = os.path.dirname(image_path)[:-11]

# get model_info_dict, obj_id
model_info_path = root_path + 'models/'
model_info_dict = mmengine.load(model_info_path + 'models_info.yml')
object_path = os.path.join(root_path, f'data/{args.id}/')
info_dict = mmengine.load(object_path + 'info.yml')
gt_dict = mmengine.load(object_path + 'gt.yml')

# 根据图像名,获取对应图像的内参
intrinsic = np.array(info_dict[int(file_name.split(".")[0])]['cam_K']).reshape(3,3)

# get corner3D (8*3)
corners3D = get_3D_corners(model_info_dict, obj_id)

# get gt and prediction
keypoint_pr = predict(image_path)
corners2D_pr = keypoint_pr.reshape(-1,2)

# Compute [R|t] by pnp ===== pred
R_pr, t_pr = pnp(corners3D,
corners2D_pr,
np.array(intrinsic, dtype='float32'))
Rt_pr = np.concatenate((R_pr, t_pr), axis=1)
proj_corners_pr = np.transpose(compute_projection(corners3D, Rt_pr, intrinsic))

# Compute [R|t] by pnp ===== gt
R_gt = np.array(gt_dict[int(file_name.split(".")[0])][0]['cam_R_m2c']).reshape(3,3)
t_gt = np.array(gt_dict[int(file_name.split(".")[0])][0]['cam_t_m2c']).reshape(3,1)
Rt_gt = np.concatenate((R_gt, t_gt), axis=1)
proj_corners_gt = np.transpose(compute_projection(corners3D, Rt_gt, intrinsic))


image = mmcv.imread(image_path)
height = image.shape[0]
width = image.shape[1]

plt.xlim((0, width))
plt.ylim((0, height))
plt.imshow(mmcv.imresize(image, (width, height)))
# Projections
edges_corners = [[0, 1], [0, 2], [0, 4], [1, 3], [1, 5], [2, 3],
[2, 6], [3, 7], [4, 5], [4, 6], [5, 7], [6, 7]]
for edge in edges_corners:
plt.plot(proj_corners_pr[edge, 0], proj_corners_pr[edge, 1], color='b', linewidth=2.0)
plt.plot(proj_corners_pr[edge, 0], proj_corners_gt[edge, 1], color='g', linewidth=2.0)
plt.gca().invert_yaxis()
plt.show()
plt.pause(0)

if __name__ == "__main__":
main()
200 changes: 200 additions & 0 deletions projects/6DofPose/tools/linemod_to_coco.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
import os
import mmengine
import argparse
import numpy as np
import mmcv

def parse_examples(data_file):
if not os.path.isfile(data_file):
print(f'Error: file {data_file} does not exist!')
return None

with open(data_file) as fid:
data_examples = [example.strip() for example in fid if example != '']

return data_examples

def images_info(object_path, data_examples):
all_images_path = os.path.join(object_path, 'rgb')
all_filenames = [
filename for filename in os.listdir(all_images_path)
if '.png' in filename and filename.replace('.png', '') in data_examples
]
image_paths = [
os.path.join(all_images_path, filename) for filename in all_filenames
]
images = []
for id, image_path in enumerate(image_paths):
img = mmcv.imread(image_path)
height = img.shape[0]
width = img.shape[1]
images.append(dict(file_name=all_filenames[id],
height=height,
width=width,
id=id))
return images

def project_points_3D_to_2D(points_3D, rotation_vector, translation_vector,
camera_matrix):
points_3D = points_3D.reshape(3,1)
rotation_vector = rotation_vector.reshape(3,3)
translation_vector = translation_vector.reshape(3,1)
pixel = camera_matrix.dot(
rotation_vector.dot(points_3D)+translation_vector)
pixel /= pixel[-1]
points_2D = pixel[:2]

return points_2D

def insert_np_cam_calibration(filtered_infos):
for info in filtered_infos:
info['cam_K_np'] = np.reshape(np.array(info['cam_K']), newshape=(3, 3))

return filtered_infos

def get_bbox_from_mask(mask, mask_value=None):
if mask_value is None:
seg = np.where(mask != 0)
else:
seg = np.where(mask == mask_value)
# check if mask is empty
if seg[0].size <= 0 or seg[1].size <= 0:
return np.zeros((4, ), dtype=np.float32), False
min_x = np.min(seg[1])
min_y = np.min(seg[0])
max_x = np.max(seg[1])
max_y = np.max(seg[0])

return np.array([min_x, min_y, max_x-min_x, max_y-min_y], dtype=np.float32)

def annotations_info(object_path, data_examples, gt_dict, info_dict,
model_info_dict, obj_id):
all_images_path = os.path.join(object_path, 'rgb')
all_filenames = [
filename for filename in os.listdir(all_images_path)
if '.png' in filename and filename.replace('.png', '') in data_examples
]
image_paths = [
os.path.join(all_images_path, filename) for filename in all_filenames
]
mask_paths = [
image_path.replace('rgb', 'mask') for image_path in image_paths
]

example_ids = [int(filename.split('.')[0]) for filename in all_filenames]
filtered_gt_lists = [gt_dict[key] for key in example_ids]
filtered_gts = []
for gt_list in filtered_gt_lists:
all_annos = [anno for anno in gt_list if anno['obj_id'] == int(obj_id)]
if len(all_annos) <= 0:
print('\nError: No annotation found!')
filtered_gts.append(None)
elif len(all_annos) > 1:
print('\nWarning: found more than one annotation.\
using only the first annotation')
filtered_gts.append(all_annos[0])
else:
filtered_gts.append(all_annos[0])

filtered_infos = [info_dict[key] for key in example_ids]
info_list = insert_np_cam_calibration(filtered_infos)

id = 0
annotations = []
# 获取bbox与keypoints
for gt, info, mask_path in zip(filtered_gts, info_list, mask_paths):
mask = mmcv.imread(mask_path)
annotation = {}
annotation['category_id'] = 1
annotation['segmentation'] = []
annotation['iscrowd'] = 0
annotation['image_id'] = id
annotation['id'] = id # 因为图片中只有一个物体,所以image_id=id
bbox = get_bbox_from_mask(mask)
annotation['bbox'] = bbox
annotation['area'] = bbox[2] * bbox[3]
annotation['num_keypoints'] = 8

# keypoints中 不存在的关键点为[0,0] 关键点的第三位是0 没有标注点 1 遮挡点 2正常点
min_x = model_info_dict[int(obj_id)]['min_x']
min_y = model_info_dict[int(obj_id)]['min_y']
min_z = model_info_dict[int(obj_id)]['min_z']
max_x = min_x + model_info_dict[int(obj_id)]['size_x']
max_y = min_y + model_info_dict[int(obj_id)]['size_y']
max_z = min_z + model_info_dict[int(obj_id)]['size_z']
corners = np.array([[max_x, max_y, min_z],
[max_x, max_y, max_z],
[max_x, min_y, min_z],
[max_x, min_y, max_z],
[min_x, max_y, min_z],
[min_x, max_y, max_z],
[min_x, min_y, min_z],
[min_x, min_y, max_z]])
corners = [
project_points_3D_to_2D(corner, np.array(gt['cam_R_m2c']),
np.array(gt['cam_t_m2c']),
info['cam_K_np'])
for corner in corners]
corners = np.array(corners).reshape(8,2)
tmp = np.array([2]*8).reshape(8,1)
corners = np.hstack((corners, tmp))
corners = corners.reshape(-1)
annotation['keypoints'] = corners

id += 1
annotations.append(annotation)
return annotations

def parse_args():
parser = argparse.ArgumentParser(description='Create_linemod_json')
parser.add_argument('--root', help='root path')
parser.add_argument('--id', type=str, help='object id, for example: 01')
parser.add_argument('--mode', type=str, help='mode, for example: train')
args = parser.parse_args()
return args

def main():
args = parse_args()

object_path = os.path.join(args.root, f'data/{args.id}/')
data_examples = parse_examples(object_path + args.mode + '.txt')
gt_dict = mmengine.load(object_path + 'gt.yml')
info_dict = mmengine.load(object_path + 'info.yml')
obj_id = args.id
model_info_path = args.root + 'models/'
model_info_dict = mmengine.load(model_info_path + 'models_info.yml')

# images
images = images_info(object_path, data_examples)

# annotations
annotations = annotations_info(object_path, data_examples,
gt_dict, info_dict, model_info_dict,
obj_id)

# categories
object = [{
'supercatgory': 'ape',
'id': 1,
'name': 'ape',
'keypoints': [
'min_min_min', 'min_min_max',
'min_max_min', 'min_max_max',
'max_min_min', 'max_min_max',
'max_max_min', 'max_max_max'],
'skeleton': [[0, 4], [1, 5], [3, 7], [6, 2],
[0, 2], [1, 3], [7, 5], [4, 6],
[0, 1], [7, 6], [5, 4], [2, 3]],
}]

# remove invalid data
linemod_coco = {
'categories': object,
'images': images,
'annotations': annotations
}
out_file = args.root + 'json/linemod_preprocessed_'+ args.mode + '.json'
mmengine.dump(linemod_coco, out_file)

if __name__ == '__main__':
main()
64 changes: 64 additions & 0 deletions projects/6DofPose/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
import cv2
import numpy as np

def get_3D_corners(model_info_dict, obj_id):
min_x = model_info_dict[int(obj_id)]['min_x']
min_y = model_info_dict[int(obj_id)]['min_y']
min_z = model_info_dict[int(obj_id)]['min_z']
max_x = min_x + model_info_dict[int(obj_id)]['size_x']
max_y = min_y + model_info_dict[int(obj_id)]['size_y']
max_z = min_z + model_info_dict[int(obj_id)]['size_z']
corners = np.array([[max_x, max_y, min_z],
[max_x, max_y, max_z],
[max_x, min_y, min_z],
[max_x, min_y, max_z],
[min_x, max_y, min_z],
[min_x, max_y, max_z],
[min_x, min_y, min_z],
[min_x, min_y, max_z]])
return corners


def pnp(points_3D, points_2D, cameraMatrix):
try:
distCoeffs = pnp.distCoeffs
except:
distCoeffs = np.zeros((8, 1), dtype='float32')

assert points_2D.shape[0] == points_2D.shape[0], 'points 3D and points 2D must have same number of vertices'

points_2D = points_2D.astype(np.float32)
points_3D = (points_3D).astype(np.float32)
_, R_exp, t = cv2.solvePnP(points_3D,
points_2D.reshape((-1,1,2)),
cameraMatrix,
distCoeffs)

R, _ = cv2.Rodrigues(R_exp)
return R, t


def project_points_3D_to_2D(points_3D, rotation_vector, translation_vector,
camera_matrix):
points_3D = points_3D.reshape(3,1)
rotation_vector = rotation_vector.reshape(3,3)
translation_vector = translation_vector.reshape(3,1)
pixel = camera_matrix.dot(
rotation_vector.dot(points_3D)+translation_vector)
pixel /= pixel[-1]
points_2D = pixel[:2]

return points_2D


def compute_projection(points_3D, transformation, internal_calibration):
points_3D = points_3D.T
tmp = np.array([1.]*8).reshape(1, 8)
points_3D = np.concatenate((points_3D, tmp))

projections_2d = np.zeros((2, points_3D.shape[1]), dtype='float32')
camera_projection = (internal_calibration.dot(transformation)).dot(points_3D)
projections_2d[0, :] = camera_projection[0, :]/camera_projection[2, :]
projections_2d[1, :] = camera_projection[1, :]/camera_projection[2, :]
return projections_2d