Skip to content

Detect presence of cataract, glaucoma and diabetic retinopathy in fundus images of the eye

Notifications You must be signed in to change notification settings

onyekaokonji/OCULAR-DISEASE-RECOGNITION

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

OCULAR-DISEASE-RECOGNITION

Description

Eye defects in particular age-related eye defects is on the rise and this places burden on the health sector via the inaccessibility and unavailability of skilled professionals who can assist with their early diagnosis. The purpose of this model is to ease the detection of these eye disorder, enablin early detection and also providing a source of assisted information to healthcare practitioners who can then make use of the information provided by the model.

Dataset

Dataset used comprises of over 9000 images obtained from this Kaggle dataset - https://www.kaggle.com/andrewmvd/ocular-disease-recognition-odir5k comprising fundus images of the normal eye and those of patients suffering from cataract, glaucoma and forms of diabetic neuropathy.

Training, Testing and Performance Metrics

The model was run on 20 epochs with a performance of 97% training accuracy with a 87% validation accuracy. It was observed that this model displayed high precision with new data and fairly high recall too although this can be attributed to the choice of loss function being used (cross entropy) as it corrected false positives ignoring false negatives

cm

About

Detect presence of cataract, glaucoma and diabetic retinopathy in fundus images of the eye

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published