Skip to content

Commit

Permalink
Update multiple_linear_regression.py
Browse files Browse the repository at this point in the history
  • Loading branch information
omairaasim authored Aug 13, 2020
1 parent a088209 commit 11d1f6d
Showing 1 changed file with 5 additions and 33 deletions.
38 changes: 5 additions & 33 deletions project_2_multiple_linear_regression/multiple_linear_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,12 +13,11 @@
y = dataset.iloc[:,4].values

# Step 2 - Encode Categorical Data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelEncoder_X = LabelEncoder()
X[:,3] = labelEncoder_X.fit_transform(X[:,3])

oneHotEncoder = OneHotEncoder(categorical_features=[3])
X = oneHotEncoder.fit_transform(X).toarray()
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
import numpy as np
ct = ColumnTransformer(transformers=[('encoder',OneHotEncoder(),[3])], remainder='passthrough')
X = np.array(ct.fit_transform(X))

# Step 3 - Dummy Trap
X = X[:,1:]
Expand All @@ -34,30 +33,3 @@

# Step 6 - Predict
y_pred = regressor.predict(X_test)

# Add ones
import numpy as np
ones = np.ones(shape = (50,1), dtype=int)
X = np.append(arr = ones, values= X, axis=1)

# Backward Elimination
import statsmodels.formula.api as sm
X_opt = X[:,[0,1,2,3,4,5]]
regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit()
regressor_OLS.summary()

X_opt = X[:,[0,1,3,4,5]]
regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit()
regressor_OLS.summary()

X_opt = X[:,[0,3,4,5]]
regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit()
regressor_OLS.summary()

X_opt = X[:,[0,3,5]]
regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit()
regressor_OLS.summary()

X_opt = X[:,[0,3]]
regressor_OLS = sm.OLS(endog = y, exog=X_opt).fit()
regressor_OLS.summary()

0 comments on commit 11d1f6d

Please sign in to comment.