Skip to content

This is the official PyTorch impelementation of our paper "Robustizing Object Detection Networks Using Augmented Feature Pooling" (ACCV2022, Oral).

License

Notifications You must be signed in to change notification settings

nttcslab/COCO-ROT

Repository files navigation

COCO-ROT:Robustizing Object Detection Networks Using Augmented Feature Pooling (ACCV2022, Oral)

This is an official PyTorch impelementation of our paper "Robustizing Object Detection Networks Using Augmented Feature Pooling (ACCV2022, Oral)"

1. Generate COCO-ROT-train/val with new randmon angles

sh ./gen_COCO_ROT.sh

2. Generate COCO-ROT-train/val with same angles to our ACCV paper

sh ./gen_COCO_ROT_accv.sh

3. Directory configuration

COCO-ROT    # This directry  
 ├── coco   # Please place your MSCOCO dataset here  
 │   ├── annotations  
 │   ├── train2017  
 │   ├── val2017  
 │   ├── test2017   
 |── coco-rot  
 │   ├── train2017  
 │   ├── val2017  
 │   ├── train2017_dbg  
 │   ├── val2017_dgb  

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@inproceedings{shibata2022robustizing,  
  title={Robustizing Object Detection Networks Using Augmented Feature Pooling},  
  author={Shibata, Takashi and Tanaka, Masayuki and Okutomi, Masatoshi},  
  booktitle={Proceedings of the Asian Conference on Computer Vision},  
  pages={2388--2405},  
  year={2022}  
}

About

This is the official PyTorch impelementation of our paper "Robustizing Object Detection Networks Using Augmented Feature Pooling" (ACCV2022, Oral).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages