-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
using lora version for spaces zeroGPU
- Loading branch information
1 parent
a978bc7
commit 4fb0ca5
Showing
4 changed files
with
241 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,215 @@ | ||
import spaces | ||
|
||
import gradio as gr | ||
from tryon_inference import run_inference | ||
import os | ||
import numpy as np | ||
from PIL import Image | ||
import tempfile | ||
import torch | ||
from diffusers import FluxTransformer2DModel, FluxFillPipeline | ||
|
||
import shutil | ||
|
||
def find_cuda(): | ||
# Check if CUDA_HOME or CUDA_PATH environment variables are set | ||
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') | ||
|
||
if cuda_home and os.path.exists(cuda_home): | ||
return cuda_home | ||
|
||
# Search for the nvcc executable in the system's PATH | ||
nvcc_path = shutil.which('nvcc') | ||
|
||
if nvcc_path: | ||
# Remove the 'bin/nvcc' part to get the CUDA installation path | ||
cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) | ||
return cuda_path | ||
|
||
return None | ||
|
||
cuda_path = find_cuda() | ||
|
||
if cuda_path: | ||
print(f"CUDA installation found at: {cuda_path}") | ||
else: | ||
print("CUDA installation not found") | ||
|
||
device = torch.device('cuda') | ||
|
||
print('Loading diffusion model ...') | ||
transformer = FluxTransformer2DModel.from_pretrained( | ||
"xiaozaa/catvton-flux-alpha", | ||
torch_dtype=torch.bfloat16 | ||
) | ||
pipe = FluxFillPipeline.from_pretrained( | ||
"black-forest-labs/FLUX.1-dev", | ||
transformer=transformer, | ||
torch_dtype=torch.bfloat16 | ||
).to(device) | ||
print('Loading Finished!') | ||
|
||
@spaces.GPU | ||
def gradio_inference( | ||
image_data, | ||
garment, | ||
num_steps=50, | ||
guidance_scale=30.0, | ||
seed=-1, | ||
width=768, | ||
height=1024 | ||
): | ||
"""Wrapper function for Gradio interface""" | ||
# Use temporary directory | ||
with tempfile.TemporaryDirectory() as tmp_dir: | ||
# Save inputs to temp directory | ||
temp_image = os.path.join(tmp_dir, "image.png") | ||
temp_mask = os.path.join(tmp_dir, "mask.png") | ||
temp_garment = os.path.join(tmp_dir, "garment.png") | ||
|
||
# Extract image and mask from ImageEditor data | ||
image = image_data["background"] | ||
mask = image_data["layers"][0] # First layer contains the mask | ||
|
||
# Convert to numpy array and process mask | ||
mask_array = np.array(mask) | ||
is_black = np.all(mask_array < 10, axis=2) | ||
mask = Image.fromarray(((~is_black) * 255).astype(np.uint8)) | ||
|
||
# Save files to temp directory | ||
image.save(temp_image) | ||
mask.save(temp_mask) | ||
garment.save(temp_garment) | ||
|
||
try: | ||
# Run inference | ||
_, tryon_result = run_inference( | ||
pipe=pipe, | ||
image_path=temp_image, | ||
mask_path=temp_mask, | ||
garment_path=temp_garment, | ||
num_steps=num_steps, | ||
guidance_scale=guidance_scale, | ||
seed=seed, | ||
size=(width, height) | ||
) | ||
return tryon_result | ||
except Exception as e: | ||
raise gr.Error(f"Error during inference: {str(e)}") | ||
|
||
with gr.Blocks() as demo: | ||
gr.Markdown(""" | ||
# CATVTON FLUX Virtual Try-On Demo | ||
Upload a model image, draw a mask, and a garment image to generate virtual try-on results. | ||
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/xiaozaa/catvton-flux-alpha) | ||
[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/nftblackmagic/catvton-flux) | ||
""") | ||
|
||
# gr.Video("example/github.mp4", label="Demo Video: How to use the tool") | ||
|
||
with gr.Column(): | ||
with gr.Row(): | ||
with gr.Column(): | ||
image_input = gr.ImageMask( | ||
label="Model Image (Click 'Edit' and draw mask over the clothing area)", | ||
type="pil", | ||
height=600, | ||
width=300 | ||
) | ||
gr.Examples( | ||
examples=[ | ||
["./example/person/00008_00.jpg"], | ||
["./example/person/00055_00.jpg"], | ||
["./example/person/00057_00.jpg"], | ||
["./example/person/00067_00.jpg"], | ||
["./example/person/00069_00.jpg"], | ||
], | ||
inputs=[image_input], | ||
label="Person Images", | ||
) | ||
with gr.Column(): | ||
garment_input = gr.Image(label="Garment Image", type="pil", height=600, width=300) | ||
gr.Examples( | ||
examples=[ | ||
["./example/garment/04564_00.jpg"], | ||
["./example/garment/00055_00.jpg"], | ||
["./example/garment/00396_00.jpg"], | ||
["./example/garment/00067_00.jpg"], | ||
["./example/garment/00069_00.jpg"], | ||
], | ||
inputs=[garment_input], | ||
label="Garment Images", | ||
) | ||
with gr.Column(): | ||
tryon_output = gr.Image(label="Try-On Result", height=600, width=300) | ||
|
||
with gr.Row(): | ||
num_steps = gr.Slider( | ||
minimum=1, | ||
maximum=100, | ||
value=30, | ||
step=1, | ||
label="Number of Steps" | ||
) | ||
guidance_scale = gr.Slider( | ||
minimum=1.0, | ||
maximum=50.0, | ||
value=30.0, | ||
step=0.5, | ||
label="Guidance Scale" | ||
) | ||
seed = gr.Slider( | ||
minimum=-1, | ||
maximum=2147483647, | ||
step=1, | ||
value=-1, | ||
label="Seed (-1 for random)" | ||
) | ||
width = gr.Slider( | ||
minimum=256, | ||
maximum=1024, | ||
step=64, | ||
value=768, | ||
label="Width" | ||
) | ||
height = gr.Slider( | ||
minimum=256, | ||
maximum=1024, | ||
step=64, | ||
value=1024, | ||
label="Height" | ||
) | ||
|
||
|
||
submit_btn = gr.Button("Generate Try-On", variant="primary") | ||
|
||
|
||
with gr.Row(): | ||
gr.Markdown(""" | ||
### Notes: | ||
- The model is trained on VITON-HD dataset. It focuses on the woman upper body try-on generation. | ||
- The mask should indicate the region where the garment will be placed. | ||
- The garment image should be on a clean background. | ||
- The model is not perfect. It may generate some artifacts. | ||
- The model is slow. Please be patient. | ||
- The model is just for research purpose. | ||
""") | ||
|
||
submit_btn.click( | ||
fn=gradio_inference, | ||
inputs=[ | ||
image_input, | ||
garment_input, | ||
num_steps, | ||
guidance_scale, | ||
seed, | ||
width, | ||
height | ||
], | ||
outputs=[tryon_output], | ||
api_name="try-on" | ||
) | ||
|
||
|
||
demo.launch() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters