This is a unoffical training code for OOTDiffusion
This repository contains the training code for the OOTDiffusion project. We extend our gratitude to the contributions of OOTDiffusion and have built upon this foundation by utilizing Huggingface's Diffusors library to implement training on the VTON dataset for virtual try-on. Our project aims to enhance the accuracy and realism of virtual try-ons through cutting-edge diffusion model technology, providing users with a more authentic try-on experience.
conda env create -f environment.yaml
conda activate groot
- Download VITON-HD dataset
- Download pre-warped cloth image/mask from Google Driver or Baidu Cloud and put it under your VITON-HD dataset
- Download cloth captions from train Google Driver test Google Driver
After these, the folder structure should look like this (the unpaired-cloth* only included in test directory):
├── VITON-HD
| ├── test_pairs.txt
| ├── train_pairs.txt
│ ├── [train | test]
| | ├── image
│ │ │ ├── [000006_00.jpg | 000008_00.jpg | ...]
│ │ ├── cloth
│ │ │ ├── [000006_00.jpg | 000008_00.jpg | ...]
│ │ ├── cloth-mask
│ │ │ ├── [000006_00.jpg | 000008_00.jpg | ...]
│ │ ├── cloth-warp
│ │ │ ├── [000006_00.jpg | 000008_00.jpg | ...]
│ │ ├── cloth-warp-mask
│ │ │ ├── [000006_00.jpg | 000008_00.jpg | ...]
│ │ ├── unpaired-cloth-warp
│ │ │ ├── [000006_00.jpg | 000008_00.jpg | ...]
│ │ ├── unpaired-cloth-warp-mask
│ │ │ ├── [000006_00.jpg | 000008_00.jpg | ...]
| | ├── cloth_caption
│ │ │ ├── [000006_00.jpg | 000008_00.jpg | ...]
bash train_ootd.sh
Train the weights or download a pretrained weight from Huggingface The weights need to be put under checkpoints dir.
sh inference_test_dataset.sh
Our unet code is directly from OOTDiffusion. We also thank DCI-VTON-Virtual-Try-On, our dataset module depends on it.
This code is only for study and research.
nftblackmagic 💻 |
Yu (Brian) Yao 💻 |
Stevada 💻 |
Dingkang Wang 💻 |
xiaoweilu 💻 |