Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add continuous correlation decoder examples #870

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 92 additions & 0 deletions examples/04_decoding/02_plot_continuous_decoders.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
"""

.. _decode_continuous:

============================
Continuous functional decoding
============================

Perform meta-analytic functional decoding on statistical images.

We can use the methods in ``nimare.decode.continuous`` to apply functional
characterization analysis to statistical images.
"""
import os

import nibabel as nib
import requests
from nilearn.plotting import plot_stat_map

from nimare.decode.continuous import CorrelationDecoder
from nimare.extract import fetch_neurosynth
from nimare.io import convert_neurosynth_to_dataset
from nimare.meta.cbma.mkda import MKDAChi2

###############################################################################
# Download Neurosynth with Topics
# -----------------------------------------------------------------------------
# Neurosynth's data files are stored at https://github.com/neurosynth/neurosynth-data.
out_dir = os.path.abspath("../example_data/")
os.makedirs(out_dir, exist_ok=True)

files = fetch_neurosynth(
data_dir=out_dir,
version="7",
overwrite=False,
source="abstract",
vocab="LDA50",
)
neurosynth_db = files[0]

###############################################################################
# Convert Neurosynth database to NiMARE dataset file
# -----------------------------------------------------------------------------
neurosynth_dset = convert_neurosynth_to_dataset(
coordinates_file=neurosynth_db["coordinates"],
metadata_file=neurosynth_db["metadata"],
annotations_files=neurosynth_db["features"],
)

###############################################################################
# Download a continuous map for decoding from NeuroVault
# -----------------------------------------------------------------------------
image_id = "3158" # tfMRI motor left hand from the HCP dataset
image_info_url = f"https://neurovault.org/api/images/{image_id}/"
image_info = requests.get(image_info_url).json()

image_url = image_info["file"]
image_filename = os.path.basename(image_url)
image_path = os.path.join(out_dir, f"{image_id}_{image_filename}")

response = requests.get(image_url)
with open(image_path, "wb") as image_file:
image_file.write(response.content)

continuous_map = nib.load(image_path)

plot_stat_map(
continuous_map,
cut_coords=[0, 0, -8],
draw_cross=False,
)

###############################################################################
#
# .. _neurosynth-topic-decoder-example:
#
# Decode an statistical image using an LDA-Based continuous decoder
# -----------------------------------------------------------------------------

# Train the decoder
decoder = CorrelationDecoder(
frequency_threshold=0.05,
meta_estimator=MKDAChi2(),
feature_group="LDA50_abstract_weight",
target_image="z_desc-association",
n_cores=1,
)
decoder.fit(neurosynth_dset)

# Decode the image
corr_df = decoder.transform(continuous_map)
corr_df.sort_values(by="r", ascending=False).head(10)