Skip to content

Commit

Permalink
Merge pull request matplotlib#3099 from rougier/unchained
Browse files Browse the repository at this point in the history
New animation example (Joy Division's Unchained Love cover)
  • Loading branch information
tacaswell committed Jun 4, 2014
2 parents 33e95c5 + 2e07048 commit e322d5f
Showing 1 changed file with 65 additions and 0 deletions.
65 changes: 65 additions & 0 deletions examples/animation/unchained.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
"""
Comparative path demonstration of frequency from a fake signal of a pulsar.
(mostly known because of the cover for Joy Division's Unknown Pleasures)
Author: Nicolas P. Rougier
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

# Create new Figure with black background
fig = plt.figure(figsize=(8, 8), facecolor='black')

# Add a subplot with no frame
ax = plt.subplot(111, frameon=False)

# Generate random data
data = np.random.uniform(0, 1, (64, 75))
X = np.linspace(-1, 1, data.shape[-1])
G = 1.5 * np.exp(-4 * X * X)

# Generate line plots
lines = []
for i in range(len(data)):
# Small reduction of the X extents to get a cheap perspective effect
xscale = 1 - i / 200.
# Same for linewidth (thicker strokes on bottom)
lw = 1.5 - i / 100.0
line, = ax.plot(xscale * X, i + G * data[i], color="w", lw=lw)
lines.append(line)

# Set y limit (or first line is cropped because of thickness)
ax.set_ylim(-1, 70)

# No ticks
ax.set_xticks([])
ax.set_yticks([])

# 2 part titles to get different font weights
ax.text(0.5, 1.0, "MATPLOTLIB ", transform=ax.transAxes,
ha="right", va="bottom", color="w",
family="sans-serif", fontweight="light", fontsize=16)
ax.text(0.5, 1.0, "UNCHAINED", transform=ax.transAxes,
ha="left", va="bottom", color="w",
family="sans-serif", fontweight="bold", fontsize=16)

# Update function
def update(*args):
# Shift all data to the right
data[:, 1:] = data[:, :-1]

# Fill-in new values
data[:, 0] = np.random.uniform(0, 1, len(data))

# Update data
for i in range(len(data)):
lines[i].set_ydata(i + G * data[i])

# Return modified artists
return lines

# Construct the animation, using the update function as the animation
# director.
anim = animation.FuncAnimation(fig, update, interval=10)
plt.show()

0 comments on commit e322d5f

Please sign in to comment.