Skip to content
Merged
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 3 additions & 14 deletions onnxruntime/core/providers/coreml/builders/impl/base_op_builder.cc
Original file line number Diff line number Diff line change
Expand Up @@ -13,14 +13,6 @@ using namespace CoreML::Specification;
namespace onnxruntime {
namespace coreml {

// Once all ops are supportted FP16, we can remove it. Before that, we keep a set of ops to
// filter suppported ones.
static std::set<std::string> Float16Ops = {
"Add", "ArgMax", "AveragePool", "BatchNormalization", "Cast", "Clip", "Concat", "Conv", "ConvTranspose",
"DepthToSpace", "Div", "Gelu", "Gemm", "GlobalAveragePool", "GlobalMaxPool", "GridSample", "GroupNormalization",
"InstanceNormalization", "LayerNormalization", "LeakyRelu", "MatMul", "MaxPool", "Mul", "PRelu", "Pow",
"Reciprocal", "Relu", "Reshape", "Resize", "Sigmoid", "Slice", "Split", "Sqrt", "Sub", "Tanh", "Transpose"};

namespace {
// TODO, move this to shared_library
bool HasExternalInitializer(const InitializedTensorSet& initializers, const Node& node,
Expand Down Expand Up @@ -114,13 +106,10 @@ bool BaseOpBuilder::IsInputDtypeSupport(const Node& node, size_t idx,
return true;
}

// only support MLProgram for FP16
#if defined(COREML_ENABLE_MLPROGRAM)
if (input_params.create_mlprogram && input_type == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16 &&
Float16Ops.count(node.OpType())) {
return true;
// only MLProgram support FP16
if (!input_params.create_mlprogram && input_type == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16) {
return false;
}
#endif

LOGS(logger, VERBOSE) << "[" << node.OpType() << "] Input type: [" << input_type << "] is not currently supported";
return false;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
#include "core/providers/coreml/builders/helper.h"
#include "core/providers/coreml/builders/impl/base_op_builder.h"
#include "core/providers/coreml/builders/impl/builder_utils.h"
#include "core/providers/coreml/shape_utils.h"
#include "core/providers/coreml/builders/model_builder.h"
#include "core/providers/coreml/builders/op_builder_factory.h"
#include "core/providers/shared/utils/utils.h"
Expand Down Expand Up @@ -55,6 +56,47 @@ bool CheckIfBothInputShapesMatch(const Node& node, const logging::Logger& logger
}
} // namespace

// Add variadic inputs to the model builder
// in onnx spec, some node allows variadic inputs, such as max(x, y, z, ...)
// while in coreml, maximum op only allows two inputs maximum(x, y)
// the conversion is doing the following:
// max(x, y, z, ...) -> max(max(x, y), z, ...)
#if defined(COREML_ENABLE_MLPROGRAM)
static void AddVariadicInputs(std::unique_ptr<CoreML::Specification::MILSpec::Operation>* op,
ModelBuilder& model_builder,
const Node& node,
const logging::Logger& logger) {
using namespace CoreML::Specification::MILSpec;
const auto& input_defs(node.InputDefs());
std::string_view layer_input_name_x = model_builder.GetUniqueName(node, "variadic");
auto input_dtype = input_defs[0]->TypeAsProto()->tensor_type().elem_type();
const int32_t elem_type = static_cast<int32_t>(input_dtype);
std::vector<int64_t> x0_shape;
auto x0_dim_size = input_defs[0]->Shape()->dim_size();
auto x1_dim_size = input_defs[1]->Shape()->dim_size();
x0_dim_size = std::max(x0_dim_size, x1_dim_size);
// fill x0_shape with -1 to make this dimension as dynamic
// Coreml supports dynamic shape when the shape value is -1
x0_shape.resize(x0_dim_size, -1);
std::unique_ptr<Operation> op_prev = std::move(*op);
for (size_t i = 2; i < input_defs.size(); i++) {
AddIntermediateOperationOutput(*op_prev, layer_input_name_x, elem_type, x0_shape);
std::unique_ptr<Operation> op_cur = model_builder.CreateOperation(node, op_prev->type());
AddOperationInput(*op_cur, "x", layer_input_name_x);
AddOperationInput(*op_cur, "y", input_defs[i]->Name());
model_builder.AddOperation(std::move(op_prev));
op_prev = std::move(op_cur);
layer_input_name_x = model_builder.GetUniqueName(node, "variadic");
x1_dim_size = input_defs[i]->Shape()->dim_size();
if (x0_dim_size < x1_dim_size) {
x0_dim_size = x1_dim_size;
x0_shape.resize(x0_dim_size, -1);
}
}
*op = std::move(op_prev);
}
#endif

Status BinaryOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const Node& node,
const logging::Logger& logger) const {
const auto& op_type(node.OpType());
Expand All @@ -70,6 +112,8 @@ Status BinaryOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const
coreml_op_type = "add";
} else if (op_type == "Mul") {
coreml_op_type = "mul";
} else if (op_type == "Max") {
coreml_op_type = "maximum";
} else if (op_type == "Sub") {
coreml_op_type = "sub";
} else if (op_type == "Div") {
Expand All @@ -86,8 +130,11 @@ Status BinaryOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const
std::unique_ptr<Operation> op = model_builder.CreateOperation(node, coreml_op_type);
AddOperationInput(*op, "x", input_defs[0]->Name());
AddOperationInput(*op, "y", input_defs[1]->Name());
if (input_defs.size() > 2) {
// "max" node may have variadic inputs
AddVariadicInputs(&op, model_builder, node, logger);
}
AddOperationOutput(*op, *node.OutputDefs()[0]);

model_builder.AddOperation(std::move(op));
} else
#endif // defined (COREML_ENABLE_MLPROGRAM)
Expand Down Expand Up @@ -157,6 +204,10 @@ bool BinaryOpBuilder::HasSupportedInputsImpl(const Node& node, const OpBuilderIn
return false;
}

if (node.OpType() == "Max" && !input_params.create_mlprogram) {
return false;
}

return true;
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
#include "core/providers/common.h"
#include "core/providers/coreml/builders/helper.h"
#include "core/providers/coreml/builders/impl/base_op_builder.h"
#include "core/providers/coreml/builders/impl/builder_utils.h"
#include "core/providers/coreml/builders/model_builder.h"
#include "core/providers/coreml/builders/op_builder_factory.h"
#include "core/providers/shared/utils/utils.h"
Expand All @@ -20,6 +21,7 @@ class ReductionOpBuilder : public BaseOpBuilder {

bool IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params,
const logging::Logger& logger) const override;
bool SupportsMLProgram() const override { return true; }
};

namespace {
Expand Down Expand Up @@ -48,13 +50,12 @@ Status ReductionOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, co
const logging::Logger& /* logger */) const {
const auto& op_type(node.OpType());
const auto& input_defs(node.InputDefs());
const auto& initializers(model_builder.GetInitializerTensors());

std::vector<int64_t> axes;

NodeAttrHelper helper(node);
if (input_defs.size() > 1 && input_defs[1]->Exists()) {
auto& axes_tensor = *initializers.at(input_defs[1]->Name());
auto& axes_tensor = *model_builder.GetConstantInitializer(input_defs[1]->Name());
Initializer axes_initializer(axes_tensor);
int64_t* data = axes_initializer.data<int64_t>();
int64_t size = axes_initializer.size();
Expand All @@ -66,29 +67,67 @@ Status ReductionOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, co

const bool keepdims = helper.Get("keepdims", 1) != 0;
const bool noop_with_empty_axes = helper.Get("noop_with_empty_axes", 0) != 0;
#if defined(COREML_ENABLE_MLPROGRAM)
if (model_builder.CreateMLProgram()) {
using namespace CoreML::Specification::MILSpec;

std::string_view coreml_op_type;
if (noop_with_empty_axes && axes.size() == 0) {
coreml_op_type = "identity";
} else if (op_type == "ReduceSum") {
coreml_op_type = "reduce_sum";
} else if (op_type == "ReduceMean") {
coreml_op_type = "reduce_mean";
} else if (op_type == "ReduceMax") {
coreml_op_type = "reduce_max";
} else if (op_type == "ReduceMin") {
coreml_op_type = "reduce_min";
} else if (op_type == "ReduceProd") {
coreml_op_type = "reduce_prod";
} else {
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT,
"ReductionOpBuilder::AddToModelBuilderImpl, unexpected op: ", op_type);
}
std::unique_ptr<Operation> op = model_builder.CreateOperation(node, coreml_op_type);
AddOperationInput(*op, "x", input_defs[0]->Name());
if (coreml_op_type != "identity") {
if (axes.size() > 0) {
AddOperationInput(*op, "axes", model_builder.AddConstant(op->type(), "axes", axes));
}
AddOperationInput(*op, "keep_dims", model_builder.AddScalarConstant(op->type(), "keep_dims", keepdims));
}
AddOperationOutput(*op, *node.OutputDefs()[0]);

model_builder.AddOperation(std::move(op));
} else
#endif // (COREML_ENABLE_MLPROGRAM)
{
std::unique_ptr<COREML_SPEC::NeuralNetworkLayer> layer = model_builder.CreateNNLayer(node);

if (op_type == "ReduceSum") {
AddReductionParams(layer->mutable_reducesum(), axes, keepdims, noop_with_empty_axes);
} else if (op_type == "ReduceMean") {
AddReductionParams(layer->mutable_reducemean(), axes, keepdims, noop_with_empty_axes);
} else {
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT,
"ReductionOpBuilder::AddToModelBuilderImpl, unknown op: ", op_type);
}

std::unique_ptr<COREML_SPEC::NeuralNetworkLayer> layer = model_builder.CreateNNLayer(node);
*layer->mutable_input()->Add() = node.InputDefs()[0]->Name();
*layer->mutable_output()->Add() = node.OutputDefs()[0]->Name();

if (op_type == "ReduceSum") {
AddReductionParams(layer->mutable_reducesum(), axes, keepdims, noop_with_empty_axes);
} else if (op_type == "ReduceMean") {
AddReductionParams(layer->mutable_reducemean(), axes, keepdims, noop_with_empty_axes);
} else {
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT,
"ReductionOpBuilder::AddToModelBuilderImpl, unknown op: ", op_type);
model_builder.AddLayer(std::move(layer));
}

*layer->mutable_input()->Add() = node.InputDefs()[0]->Name();
*layer->mutable_output()->Add() = node.OutputDefs()[0]->Name();

model_builder.AddLayer(std::move(layer));
return Status::OK();
}

bool ReductionOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params,
const logging::Logger& logger) const {
const auto& input_defs = node.InputDefs();

if (!input_params.create_mlprogram &&
(node.OpType() == "ReduceMax" || node.OpType() == "ReduceMin" || node.OpType() == "ReduceProd")) {
return false;
}
NodeAttrHelper helper(node);

// noop_with_empty_axes defaults to false and is only available in newer opsets where 'axes' is an optional input
Expand All @@ -99,18 +138,16 @@ bool ReductionOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInpu
if (input_defs.size() > 1 && input_defs[1]->Exists()) {
// 'axes' is optional input in new opsets
const auto& axes_name = input_defs[1]->Name();
const auto& initializers = input_params.graph_viewer.GetAllInitializedTensors();
if (!Contains(initializers, axes_name)) {
const auto* axes = input_params.graph_viewer.GetConstantInitializer(axes_name);
if (!axes) {
LOGS(logger, VERBOSE) << "Axes of reduction must be a constant initializer";
return false;
}

empty_axes = initializers.at(axes_name)->int64_data_size() == 0;
empty_axes = axes->int64_data_size() == 0;
}

if (empty_axes && noop_with_empty_axes) {
// TODO: When we add ML Program support we should enable this as it makes the node an Identity op
LOGS(logger, VERBOSE) << "CoreML doesn't support noop on empty axes for reduction layers" << std::endl;
if (empty_axes && noop_with_empty_axes && !input_params.create_mlprogram) {
LOGS(logger, VERBOSE) << "NeuralNetwork doesn't support noop on empty axes for reduction layers";
return false;
}

Expand Down
114 changes: 104 additions & 10 deletions onnxruntime/core/providers/coreml/builders/impl/shape_op_builder.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,9 @@
// Licensed under the MIT License.

#include "core/providers/coreml/builders/impl/base_op_builder.h"
#include "core/providers/coreml/builders/impl/builder_utils.h"
#include "core/providers/coreml/builders/model_builder.h"
#include "core/providers/coreml/shape_utils.h"
#include "core/providers/coreml/builders/op_builder_factory.h"
#include "core/providers/shared/utils/utils.h" // for NodeAttrHelper

Expand All @@ -14,28 +16,120 @@ class ShapeOpBuilder : public BaseOpBuilder {

bool IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params,
const logging::Logger& logger) const override;
bool HasSupportedInputsImpl(const Node& node, const OpBuilderInputParams& input_params,
const logging::Logger& logger) const override;
bool SupportsMLProgram() const override { return true; }
};

Status ShapeOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const Node& node,
const logging::Logger& /*logger*/) const {
auto layer = model_builder.CreateNNLayer(node);
layer->mutable_getshape();
*layer->mutable_input()->Add() = node.InputDefs()[0]->Name();
*layer->mutable_output()->Add() = node.OutputDefs()[0]->Name();
model_builder.AddLayer(std::move(layer));
const auto& input_defs = node.InputDefs();

#if defined(COREML_ENABLE_MLPROGRAM)
if (model_builder.CreateMLProgram()) {
using namespace CoreML::Specification::MILSpec;
NodeAttrHelper node_attr_helper{node};
int64_t num_dims = input_defs[0]->Shape()->dim_size();
int64_t start = HandleNegativeAxis(node_attr_helper.Get("start", 0), num_dims);

int64_t size = -1;
if (node_attr_helper.HasAttr("end")) {
int64_t end = HandleNegativeAxis(node_attr_helper.Get("end", -1), num_dims);
size = end - start;
}

int32_t output_datatype = ONNX_NAMESPACE::TensorProto_DataType_INT32;
std::unique_ptr<Operation> op = model_builder.CreateOperation(node, "shape");
AddOperationInput(*op, "x", input_defs[0]->Name());
if (size != -1 || start != 0) {
std::string_view layer_input_name_x = model_builder.GetUniqueName(node, "slice_by_size");
std::vector<int64_t> x0_shape{num_dims};
AddIntermediateOperationOutput(*op, layer_input_name_x, output_datatype, x0_shape);
model_builder.AddOperation(std::move(op));

auto slice_op = model_builder.CreateOperation(node, "slice_by_size");
AddOperationInput(*slice_op, "x", layer_input_name_x);
std::vector<int64_t> starts = {start};
std::vector<int64_t> sizes = {size};
AddOperationInput(*slice_op, "begin", model_builder.AddConstant(slice_op->type(), "begin", starts));
AddOperationInput(*slice_op, "size", model_builder.AddConstant(slice_op->type(), "size", sizes));
AddOperationOutput(*slice_op, *node.OutputDefs()[0], output_datatype);
model_builder.AddOperation(std::move(slice_op));
} else {
AddOperationOutput(*op, *node.OutputDefs()[0], output_datatype);
model_builder.AddOperation(std::move(op));
}
} else // NOLINT
#endif
{
auto layer = model_builder.CreateNNLayer(node);
layer->mutable_getshape();
*layer->mutable_input()->Add() = input_defs[0]->Name();
*layer->mutable_output()->Add() = node.OutputDefs()[0]->Name();
model_builder.AddLayer(std::move(layer));
}
return Status::OK();
}

bool ShapeOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& /*input_params*/,
bool ShapeOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params,
const logging::Logger& logger) const {
const auto* tensor_shape = node.InputDefs()[0]->Shape();

NodeAttrHelper node_attr_helper{node};
if (node_attr_helper.Get("start", 0) != 0) {
LOGS(logger, VERBOSE) << "Shape does not support 'start' attribute with value other than 0";
if (!input_params.create_mlprogram) {
if (node_attr_helper.HasAttr("end")) {
LOGS(logger, VERBOSE) << "Shape does not support 'end' attribute";
return false;
}

if (node_attr_helper.Get("start", 0) != 0) {
LOGS(logger, VERBOSE) << "Shape does not support 'start' attribute with value other than 0";
return false;
}
} else {
int64_t size = node_attr_helper.HasAttr("end")
? HandleNegativeAxis(node_attr_helper.Get("end", 0), tensor_shape->dim_size())
: tensor_shape->dim_size();
int64_t start = HandleNegativeAxis(node_attr_helper.Get("start", 0), tensor_shape->dim_size());
size = size - start;
if (size == 0) {
LOGS(logger, VERBOSE) << "Shape does not support slicing when size is 0";
return false;
} else if (size != tensor_shape->dim_size() && tensor_shape == nullptr) {
LOGS(logger, VERBOSE) << "Shape does not support slicing when tensor_shape is not available";
return false;
}
}

return true;
}

bool ShapeOpBuilder::HasSupportedInputsImpl(const Node& node,
[[maybe_unused]] const OpBuilderInputParams& input_params,
const logging::Logger& logger) const {
// We only check the type of input 0
const auto& input = *node.InputDefs()[0];

int32_t input_type;
if (!GetType(input, input_type, logger)) {
return false;
}

if (node_attr_helper.HasAttr("end")) {
LOGS(logger, VERBOSE) << "Shape does not support 'end' attribute";
if (input_params.create_mlprogram) {
if ((input_type == ONNX_NAMESPACE::TensorProto_DataType_INT32 ||
input_type == ONNX_NAMESPACE::TensorProto_DataType_FLOAT ||
input_type == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16)) {
return true;
} else {
LOGS(logger, VERBOSE) << "[" << node.OpType()
<< "] Input type: [" << input_type
<< "] is not supported.";
return false;
}
} else if (input_type != ONNX_NAMESPACE::TensorProto_DataType_FLOAT) {
LOGS(logger, VERBOSE) << "[" << node.OpType()
<< "] Input type: [" << input_type
<< "] is not supported.";
return false;
}

Expand Down
Loading