Skip to content

Commit

Permalink
Feature(LLMLingua-2): update paper link (#112)
Browse files Browse the repository at this point in the history
Co-authored-by: Qianhui Wu <[email protected]>
Co-authored-by: panzs <[email protected]>
Co-authored-by: Xufang Luo <[email protected]>
Co-authored-by: Yuqing Yang <[email protected]>
  • Loading branch information
5 people authored Mar 20, 2024
1 parent c2164c0 commit 2762840
Show file tree
Hide file tree
Showing 2 changed files with 7 additions and 7 deletions.
12 changes: 6 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
| <a href="https://llmlingua.com/"><b>Project Page</b></a> |
<a href="https://aclanthology.org/2023.emnlp-main.825/"><b>LLMLingua</b></a> |
<a href="https://arxiv.org/abs/2310.06839"><b>LongLLMLingua</b></a> |
<a href="https://arxiv.org/abs/2403."><b>LLMLingua-2</b></a> |
<a href="https://arxiv.org/abs/2403.12968"><b>LLMLingua-2</b></a> |
<a href="https://huggingface.co/spaces/microsoft/LLMLingua"><b>LLMLingua Demo</b></a> |
<a href="https://huggingface.co/spaces/microsoft/LLMLingua-2"><b>LLMLingua-2 Demo</b></a> |
</p>
Expand All @@ -20,13 +20,13 @@ https://github.com/microsoft/LLMLingua/assets/30883354/eb0ea70d-6d4c-4aa7-8977-6

## News

- 🦚 We're excited to announce the release of **LLMLingua-2**, boasting a 3x-6x speed improvement over LLMLingua! For more information, check out our [paper](https://arxiv.org/abs/2403.), visit the [project page](https://llmlingua.com/llmlingua-2.html), and explore our [demo](https://huggingface.co/spaces/microsoft/LLMLingua-2).
- 🦚 We're excited to announce the release of **LLMLingua-2**, boasting a 3x-6x speed improvement over LLMLingua! For more information, check out our [paper](https://arxiv.org/abs/2403.12968), visit the [project page](https://llmlingua.com/llmlingua2.html), and explore our [demo](https://huggingface.co/spaces/microsoft/LLMLingua-2).
- 👾 LLMLingua has been integrated into [LangChain](https://github.com/langchain-ai/langchain/blob/master/docs/docs/integrations/retrievers/llmlingua.ipynb) and [LlamaIndex](https://github.com/run-llama/llama_index/blob/main/docs/examples/node_postprocessor/LongLLMLingua.ipynb), two widely-used RAG frameworks.
- 🤳 Talk slides are available in [AI Time Jan, 24](https://drive.google.com/file/d/1fzK3wOvy2boF7XzaYuq2bQ3jFeP1WMk3/view?usp=sharing).
- 🖥 EMNLP'23 slides are available in [Session 5](https://drive.google.com/file/d/1GxQLAEN8bBB2yiEdQdW4UKoJzZc0es9t/view) and [BoF-6](https://drive.google.com/file/d/1LJBUfJrKxbpdkwo13SgPOqugk-UjLVIF/view).
- 📚 Check out our new [blog post](https://medium.com/@iofu728/longllmlingua-bye-bye-to-middle-loss-and-save-on-your-rag-costs-via-prompt-compression-54b559b9ddf7) discussing RAG benefits and cost savings through prompt compression. See the script example [here](https://github.com/microsoft/LLMLingua/blob/main/examples/Retrieval.ipynb).
- 🎈 Visit our [project page](https://llmlingua.com/) for real-world case studies in RAG, Online Meetings, CoT, and Code.
- 👨‍🦯 Explore our ['./examples'](./examples) directory for practical applications, including [RAG](./examples/RAG.ipynb), [Online Meeting](./examples/OnlineMeeting.ipynb), [CoT](./examples/CoT.ipynb), [Code](./examples/Code.ipynb), and [RAG using LlamaIndex](./examples/RAGLlamaIndex.ipynb).
- 👨‍🦯 Explore our ['./examples'](./examples) directory for practical applications, including [LLMLingua-2](./examples/LLMLingua2.ipynb), [RAG](./examples/RAG.ipynb), [Online Meeting](./examples/OnlineMeeting.ipynb), [CoT](./examples/CoT.ipynb), [Code](./examples/Code.ipynb), and [RAG using LlamaIndex](./examples/RAGLlamaIndex.ipynb).

## TL;DR

Expand All @@ -42,7 +42,7 @@ LongLLMLingua mitigates the 'lost in the middle' issue in LLMs, enhancing long-c

LLMLingua-2, a small-size yet powerful prompt compression method trained via data distillation from GPT-4 for token classification with a BERT-level encoder, excels in task-agnostic compression. It surpasses LLMLingua in handling out-of-domain data, offering 3x-6x faster performance.

- [LLMLingua-2: Context-Aware Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression](https://arxiv.org/abs/2403.) (Under Review)<br>
- [LLMLingua-2: Context-Aware Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression](https://arxiv.org/abs/2403.12968) (Under Review)<br>
_Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, Dongmei Zhang_

## 🎥 Overview
Expand Down Expand Up @@ -107,9 +107,9 @@ If you find this repo helpful, please cite the following papers:
@article{wu2024llmlingua2,
title = "{LLML}ingua-2: Context-Aware Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression",
author = "Zhuoshi Pan and Qianhui Wu and Huiqiang Jiang and Menglin Xia and Xufang Luo and Jue Zhang and Qingwei Lin and Victor Ruhle and Yuqing Yang and Chin-Yew Lin and H. Vicky Zhao and Lili Qiu and Dongmei Zhang",
url = "https://arxiv.org/abs/2403.",
url = "https://arxiv.org/abs/2403.12968",
journal = "ArXiv preprint",
volume = "abs/2403.",
volume = "abs/2403.12968",
year = "2024",
}
```
Expand Down
2 changes: 1 addition & 1 deletion examples/LLMLingua2.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"<a target=\"_blank\" href=\"\">LLMLingua-2</a> focuses on task-agnostic prompt compression for better generalizability and efficiency. It is a small-size yet powerful prompt compression method trained via data distillation from GPT-4 for token classification with a BERT-level encoder, excels in <b>task-agnostic compression</b>. It surpasses LLMLingua in handling <b>out-of-domain data</b>, offering <b>3x-6x faster</b> performance.\n",
"<a target=\"_blank\" href=\"https://arxiv.org/abs/2403.12968\">LLMLingua-2</a> focuses on task-agnostic prompt compression for better generalizability and efficiency. It is a small-size yet powerful prompt compression method trained via data distillation from GPT-4 for token classification with a BERT-level encoder, excels in <b>task-agnostic compression</b>. It surpasses LLMLingua in handling <b>out-of-domain data</b>, offering <b>3x-6x faster</b> performance.\n",
"\n",
"Below, We showcase the usage and compression results of <i>LLMLingua-2</i> on both <b>in-domain</b> and <b>out-of-domain</b> datasets, including various tasks such as single-document QA, multi-document QA, summarization and in-context learning.\n"
]
Expand Down

0 comments on commit 2762840

Please sign in to comment.