Minimal Learning Machine (MLM) applied to the Discretizable Molecular Distance Geometry Problem
From Eq. (7) of [1], we have
From this, we get
If $\delta(y,t_i)=||y-t_i||2$ (Euclidean distance), then $$\frac{\partial c_i(y)}{\partial y_j}=\frac{\partial ((y-t_i)'(y-t_i) -\hat\delta^2_i)}{\partial y_j}=2(y_j-t{ij}).$$
Finally, we conclude that
-
de Souza Junior, A. H., Corona, F., Barreto, G. A., Miche, Y., & Lendasse, A. (2015). Minimal learning machine: a novel supervised distance-based approach for regression and classification. Neurocomputing, 164, 34-44.
-
'Lavor, Carlile. "On generating instances for the molecular distance geometry problem." Global optimization. Springer, Boston, MA, 2006. 405-414.