@@ -43,6 +43,8 @@ Unset Strict Implicit.
43
43
Unset Printing Implicit Defensive.
44
44
45
45
Import Order.Theory.
46
+ (* remove below line when requireing mathcomp >= 2.4.0 *)
47
+ Local Notation le_val := Order.le_val.
46
48
47
49
Local Open Scope classical_set_scope.
48
50
Local Open Scope order_scope.
@@ -707,24 +709,27 @@ Let set_meetU (B : set U) := inU (opredSM B).
707
709
Lemma set_meetU_is_glb : set_f_is_glb set_meetU.
708
710
Proof .
709
711
move=> B; split.
710
- - by move=> x Bx; rewrite leEsub SubK set_meet_lb//; exists x.
711
- - move=> x ubx; rewrite leEsub SubK set_meet_ge_lb// => _ [y By <-].
712
- by rewrite -leEsub ubx.
712
+ - by move=> x Bx; rewrite -le_val SubK set_meet_lb//; exists x.
713
+ - move=> x ubx; rewrite -le_val SubK set_meet_ge_lb// => _ [y By <-].
714
+ by rewrite le_val ubx.
713
715
Qed .
714
716
715
717
HB.instance Definition _ := POrder_isMeetCompleteLattice.Build d' U
716
718
set_meetU_is_glb.
717
719
718
720
Lemma val1 : (val : U -> T) \top = \top.
719
721
Proof . by rewrite SubK image_set0 set_meet0. Qed .
722
+ #[warning="-HB.no-new-instance"]
720
723
HB.instance Definition _ := Order.isTSubLattice.Build d T S d' U val1.
721
724
722
725
Lemma valI : Order.meet_morphism (val : U -> T).
723
726
Proof . by move=> x y; rewrite SubK !image_setU !image_set1 set_meet2. Qed .
727
+ #[warning="-HB.no-new-instance"]
724
728
HB.instance Definition _ := Order.isMeetSubLattice.Build d T S d' U valI.
725
729
726
730
Lemma valSM : set_meet_morphism (val : U -> T).
727
731
Proof . by move=> B; rewrite SubK. Qed .
732
+ #[warning="-HB.no-new-instance"]
728
733
HB.instance Definition _ := isMeetSubCompleteLattice.Build d T S d' U valSM.
729
734
730
735
HB.end .
@@ -759,16 +764,17 @@ Let set_joinU (B : set U) := inU (opredSJ B).
759
764
Lemma set_joinU_is_lub : set_f_is_lub set_joinU.
760
765
Proof .
761
766
move=> B; split.
762
- - by move=> x Bx; rewrite leEsub SubK set_join_ub//; exists x.
763
- - move=> x ubx; rewrite leEsub SubK set_join_le_ub// => _ [y By <-].
764
- by rewrite -leEsub ubx.
767
+ - by move=> x Bx; rewrite -le_val SubK set_join_ub//; exists x.
768
+ - move=> x ubx; rewrite -le_val SubK set_join_le_ub// => _ [y By <-].
769
+ by rewrite le_val ubx.
765
770
Qed .
766
771
767
772
HB.instance Definition _ := POrder_isJoinCompleteLattice.Build d' U
768
773
set_joinU_is_lub.
769
774
770
775
Lemma val0 : (val : U -> T) \bot = \bot.
771
776
Proof . by rewrite SubK image_set0 set_join0. Qed .
777
+ #[warning="-HB.no-new-instance"]
772
778
HB.instance Definition _ := Order.isBSubLattice.Build d T S d' U val0.
773
779
774
780
Lemma valU : Order.join_morphism (val : U -> T).
@@ -816,24 +822,25 @@ Let set_joinU (B : set U) := inU (opredSJ B).
816
822
Lemma set_meetU_is_glb : set_f_is_glb set_meetU.
817
823
Proof .
818
824
move=> B; split.
819
- - by move=> x Bx; rewrite leEsub SubK set_meet_lb//; exists x.
820
- - move=> x lbx; rewrite leEsub SubK set_meet_ge_lb// => _ [y By <-].
821
- by rewrite -leEsub lbx.
825
+ - by move=> x Bx; rewrite -le_val SubK set_meet_lb//; exists x.
826
+ - move=> x lbx; rewrite -le_val SubK set_meet_ge_lb// => _ [y By <-].
827
+ by rewrite le_val lbx.
822
828
Qed .
823
829
824
830
Lemma set_joinU_is_lub : set_f_is_lub set_joinU.
825
831
Proof .
826
832
move=> B; split.
827
- - by move=> x Bx; rewrite leEsub SubK set_join_ub//; exists x.
828
- - move=> x ubx; rewrite leEsub SubK set_join_le_ub// => _ [y By <-].
829
- by rewrite -leEsub ubx.
833
+ - by move=> x Bx; rewrite -le_val SubK set_join_ub//; exists x.
834
+ - move=> x ubx; rewrite -le_val SubK set_join_le_ub// => _ [y By <-].
835
+ by rewrite le_val ubx.
830
836
Qed .
831
837
832
838
HB.instance Definition _ := POrder_isCompleteLattice.Build d' U
833
839
set_meetU_is_glb set_joinU_is_lub.
834
840
835
841
Lemma val0 : (val : U -> T) \bot = \bot.
836
842
Proof . by rewrite SubK image_set0 set_join0. Qed .
843
+ #[warning="-HB.no-new-instance"]
837
844
HB.instance Definition _ := Order.isBSubLattice.Build d T S d' U val0.
838
845
839
846
Lemma val1 : (val : U -> T) \top = \top.
0 commit comments