Skip to content

Commit 1736752

Browse files
committed
Address warnings
1 parent 0e6e3c9 commit 1736752

File tree

3 files changed

+28
-21
lines changed

3 files changed

+28
-21
lines changed

complete_dioid.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -462,7 +462,7 @@ HB.factory Record CompleteLattice_isComCompleteDioid d D
462462
addA : associative add;
463463
addC : commutative add;
464464
add0d : left_id zero add;
465-
adddd : idempotent add;
465+
adddd : idempotent_op add;
466466
mulA : associative mul;
467467
mulC : commutative mul;
468468
mul1d : left_id one mul;

complete_lattice.v

Lines changed: 19 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -43,6 +43,8 @@ Unset Strict Implicit.
4343
Unset Printing Implicit Defensive.
4444

4545
Import Order.Theory.
46+
(* remove below line when requireing mathcomp >= 2.4.0 *)
47+
Local Notation le_val := Order.le_val.
4648

4749
Local Open Scope classical_set_scope.
4850
Local Open Scope order_scope.
@@ -707,24 +709,27 @@ Let set_meetU (B : set U) := inU (opredSM B).
707709
Lemma set_meetU_is_glb : set_f_is_glb set_meetU.
708710
Proof.
709711
move=> B; split.
710-
- by move=> x Bx; rewrite leEsub SubK set_meet_lb//; exists x.
711-
- move=> x ubx; rewrite leEsub SubK set_meet_ge_lb// => _ [y By <-].
712-
by rewrite -leEsub ubx.
712+
- by move=> x Bx; rewrite -le_val SubK set_meet_lb//; exists x.
713+
- move=> x ubx; rewrite -le_val SubK set_meet_ge_lb// => _ [y By <-].
714+
by rewrite le_val ubx.
713715
Qed.
714716

715717
HB.instance Definition _ := POrder_isMeetCompleteLattice.Build d' U
716718
set_meetU_is_glb.
717719

718720
Lemma val1 : (val : U -> T) \top = \top.
719721
Proof. by rewrite SubK image_set0 set_meet0. Qed.
722+
#[warning="-HB.no-new-instance"]
720723
HB.instance Definition _ := Order.isTSubLattice.Build d T S d' U val1.
721724

722725
Lemma valI : Order.meet_morphism (val : U -> T).
723726
Proof. by move=> x y; rewrite SubK !image_setU !image_set1 set_meet2. Qed.
727+
#[warning="-HB.no-new-instance"]
724728
HB.instance Definition _ := Order.isMeetSubLattice.Build d T S d' U valI.
725729

726730
Lemma valSM : set_meet_morphism (val : U -> T).
727731
Proof. by move=> B; rewrite SubK. Qed.
732+
#[warning="-HB.no-new-instance"]
728733
HB.instance Definition _ := isMeetSubCompleteLattice.Build d T S d' U valSM.
729734

730735
HB.end.
@@ -759,16 +764,17 @@ Let set_joinU (B : set U) := inU (opredSJ B).
759764
Lemma set_joinU_is_lub : set_f_is_lub set_joinU.
760765
Proof.
761766
move=> B; split.
762-
- by move=> x Bx; rewrite leEsub SubK set_join_ub//; exists x.
763-
- move=> x ubx; rewrite leEsub SubK set_join_le_ub// => _ [y By <-].
764-
by rewrite -leEsub ubx.
767+
- by move=> x Bx; rewrite -le_val SubK set_join_ub//; exists x.
768+
- move=> x ubx; rewrite -le_val SubK set_join_le_ub// => _ [y By <-].
769+
by rewrite le_val ubx.
765770
Qed.
766771

767772
HB.instance Definition _ := POrder_isJoinCompleteLattice.Build d' U
768773
set_joinU_is_lub.
769774

770775
Lemma val0 : (val : U -> T) \bot = \bot.
771776
Proof. by rewrite SubK image_set0 set_join0. Qed.
777+
#[warning="-HB.no-new-instance"]
772778
HB.instance Definition _ := Order.isBSubLattice.Build d T S d' U val0.
773779

774780
Lemma valU : Order.join_morphism (val : U -> T).
@@ -816,24 +822,25 @@ Let set_joinU (B : set U) := inU (opredSJ B).
816822
Lemma set_meetU_is_glb : set_f_is_glb set_meetU.
817823
Proof.
818824
move=> B; split.
819-
- by move=> x Bx; rewrite leEsub SubK set_meet_lb//; exists x.
820-
- move=> x lbx; rewrite leEsub SubK set_meet_ge_lb// => _ [y By <-].
821-
by rewrite -leEsub lbx.
825+
- by move=> x Bx; rewrite -le_val SubK set_meet_lb//; exists x.
826+
- move=> x lbx; rewrite -le_val SubK set_meet_ge_lb// => _ [y By <-].
827+
by rewrite le_val lbx.
822828
Qed.
823829

824830
Lemma set_joinU_is_lub : set_f_is_lub set_joinU.
825831
Proof.
826832
move=> B; split.
827-
- by move=> x Bx; rewrite leEsub SubK set_join_ub//; exists x.
828-
- move=> x ubx; rewrite leEsub SubK set_join_le_ub// => _ [y By <-].
829-
by rewrite -leEsub ubx.
833+
- by move=> x Bx; rewrite -le_val SubK set_join_ub//; exists x.
834+
- move=> x ubx; rewrite -le_val SubK set_join_le_ub// => _ [y By <-].
835+
by rewrite le_val ubx.
830836
Qed.
831837

832838
HB.instance Definition _ := POrder_isCompleteLattice.Build d' U
833839
set_meetU_is_glb set_joinU_is_lub.
834840

835841
Lemma val0 : (val : U -> T) \bot = \bot.
836842
Proof. by rewrite SubK image_set0 set_join0. Qed.
843+
#[warning="-HB.no-new-instance"]
837844
HB.instance Definition _ := Order.isBSubLattice.Build d T S d' U val0.
838845

839846
Lemma val1 : (val : U -> T) \top = \top.

dioid.v

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,7 @@ Import Order.Theory GRing.Theory.
7373

7474
HB.mixin Record SemiRing_POrder_isDioid d D
7575
of GRing.SemiRing D & Order.POrder d D := {
76-
adddd : @idempotent D +%R;
76+
adddd : @idempotent_op D +%R;
7777
le_def : forall (a b : D), (a <= b) = (a + b == b);
7878
}.
7979

@@ -105,7 +105,7 @@ HB.factory Record POrder_isDioid d D of Order.POrder d D := {
105105
addA : associative add;
106106
addC : commutative add;
107107
add0d : left_id zero add;
108-
adddd : idempotent add;
108+
adddd : idempotent_op add;
109109
mulA : associative mul;
110110
mul1d : left_id one mul;
111111
muld1 : right_id one mul;
@@ -124,7 +124,7 @@ HB.instance Definition _ := SemiRing_POrder_isDioid.Build d D adddd le_def.
124124
HB.end.
125125

126126
HB.factory Record SemiRing_isDioid (d : Order.disp_t) D of GRing.SemiRing D := {
127-
adddd : @idempotent D +%R;
127+
adddd : @idempotent_op D +%R;
128128
}.
129129

130130
HB.builders Context d D of SemiRing_isDioid d D.
@@ -168,7 +168,7 @@ HB.factory Record Choice_isDioid (d : Order.disp_t) D of Choice D := {
168168
addA : associative add;
169169
addC : commutative add;
170170
add0d : left_id zero add;
171-
adddd : idempotent add;
171+
adddd : idempotent_op add;
172172
mulA : associative mul;
173173
mul1d : left_id one mul;
174174
muld1 : right_id one mul;
@@ -241,7 +241,7 @@ HB.factory Record POrder_isComDioid d D of Order.POrder d D := {
241241
addA : associative add;
242242
addC : commutative add;
243243
add0d : left_id zero add;
244-
adddd : idempotent add;
244+
adddd : idempotent_op add;
245245
mulA : associative mul;
246246
mulC : commutative mul;
247247
mul1d : left_id one mul;
@@ -277,7 +277,7 @@ HB.factory Record Choice_isComDioid (d : Order.disp_t) D of Choice D := {
277277
addA : associative add;
278278
addC : commutative add;
279279
add0d : left_id zero add;
280-
adddd : idempotent add;
280+
adddd : idempotent_op add;
281281
mulA : associative mul;
282282
mulC : commutative mul;
283283
mul1d : left_id one mul;
@@ -328,10 +328,10 @@ HB.factory Record SubSemiRing_SubPOrder_isSubDioid d (D : dioidType d) S d' U
328328
of GRing.SubSemiRing D S U & @Order.SubPOrder d D S d' U := {}.
329329

330330
HB.builders Context d D S d' U of SubSemiRing_SubPOrder_isSubDioid d D S d' U.
331-
Lemma adddd : @idempotent U +%R.
331+
Lemma adddd : @idempotent_op U +%R.
332332
Proof. by move=> x; apply: val_inj; rewrite raddfD adddd. Qed.
333333
Lemma le_def (a b : U) : (a <= b) = (a + b == b).
334-
Proof. by rewrite leEsub le_def -rmorphD /= (inj_eq val_inj). Qed.
334+
Proof. by rewrite -Order.le_val le_def -rmorphD /= (inj_eq val_inj). Qed.
335335
HB.instance Definition _ := SemiRing_POrder_isDioid.Build d' U adddd le_def.
336336
HB.end.
337337

0 commit comments

Comments
 (0)