@@ -85,14 +85,14 @@ HB.structure Definition CompleteDioid d :=
85
85
86
86
Section CompleteDioidTheory.
87
87
88
- Variables (disp : unit ) (D : completeDioidType disp).
88
+ Variables (disp : Order.disp_t ) (D : completeDioidType disp).
89
89
90
90
Implicit Types a b c : D.
91
91
Implicit Types B : set D.
92
92
93
93
Notation set_add := set_join.
94
94
95
- Lemma bottom_zero : 0%O = 0%R :> D.
95
+ Lemma bottom_zero : \bot = 0%R :> D.
96
96
Proof . by apply/le_anti; rewrite le0x le0d. Qed .
97
97
98
98
Lemma set_addDl a B : set_add (a |` B) = a + set_add B.
@@ -109,10 +109,10 @@ Proof. by rewrite -[in LHS](set_join1 b) -set_addDl set_joinU !set_join1. Qed.
109
109
Lemma set_addU A B : set_add (A `|` B) = set_add A + set_add B.
110
110
Proof . by rewrite set_joinU add_join. Qed .
111
111
112
- Lemma add_d1 : @right_zero D D 1%O +%R.
112
+ Lemma add_d1 : @right_zero D D \top +%R.
113
113
Proof . by move=> x; apply/eqP; rewrite -le_def lex1. Qed .
114
114
115
- Lemma add_1d : @left_zero D D 1%O +%R.
115
+ Lemma add_1d : @left_zero D D \top +%R.
116
116
Proof . by move=> x; rewrite addrC add_d1. Qed .
117
117
118
118
Lemma set_add0 (F : nat -> D) : set_add [set F i | i in [set x | 'I_0 x]] = 0%R.
@@ -353,7 +353,7 @@ apply/idP/idP => H; [exact: set_join_ub|].
353
353
by move: (div_mul_le b a); apply/le_trans/led_mul2r.
354
354
Qed .
355
355
356
- Lemma div_top x : 1%O / x = 1%O .
356
+ Lemma div_top x : \top / x = \top .
357
357
Proof . apply/le_anti /andP; split; [|rewrite -mul_div_equiv]; exact: lex1. Qed .
358
358
359
359
Lemma led_divl a b c : a <= b -> a / c <= b / c.
@@ -482,7 +482,7 @@ HB.end.
482
482
483
483
Section ComCompleteDioidTheory.
484
484
485
- Variables (disp : unit ) (D : comCompleteDioidType disp).
485
+ Variables (disp : Order.disp_t ) (D : comCompleteDioidType disp).
486
486
487
487
Implicit Types a b : D.
488
488
@@ -586,7 +586,7 @@ HB.instance Definition _ :=
586
586
HB.end .
587
587
588
588
HB.factory Record SubChoice_isJoinSubCompleteDioid d (D : completeDioidType d)
589
- S (d' : unit ) U of SubChoice D S U := {
589
+ S (d' : Order.disp_t ) U of SubChoice D S U := {
590
590
semiring_closed_subproof : semiring_closed S;
591
591
opredSJ_subproof : set_join_closed S;
592
592
}.
@@ -598,8 +598,8 @@ HB.instance Definition _ :=
598
598
SubDioid_SubPOrder_isJoinSubCompleteDioid.Build d D S d' U opredSJ_subproof.
599
599
HB.end .
600
600
601
- HB.factory Record SubChoice_isJoinSubComCompleteDioid
602
- d (D : comCompleteDioidType d) S (d' : unit ) U of SubChoice D S U := {
601
+ HB.factory Record SubChoice_isJoinSubComCompleteDioid d
602
+ (D : comCompleteDioidType d) S (d' : Order.disp_t ) U of SubChoice D S U := {
603
603
semiring_closed_subproof : semiring_closed S;
604
604
opredSJ_subproof : set_join_closed S;
605
605
}.
@@ -648,7 +648,7 @@ HB.instance Definition _ :=
648
648
HB.end .
649
649
650
650
HB.factory Record SubChoice_isSubCompleteDioid d (D : completeDioidType d) S
651
- (d' : unit ) U of SubChoice D S U := {
651
+ (d' : Order.disp_t ) U of SubChoice D S U := {
652
652
semiring_closed_subproof : semiring_closed S;
653
653
opredSM_subproof : set_meet_closed S;
654
654
opredSJ_subproof : set_join_closed S;
@@ -662,8 +662,8 @@ HB.instance Definition _ :=
662
662
opredSM_subproof opredSJ_subproof.
663
663
HB.end .
664
664
665
- HB.factory Record SubChoice_isSubComCompleteDioid
666
- d (D : comCompleteDioidType d) S (d' : unit ) U of SubChoice D S U := {
665
+ HB.factory Record SubChoice_isSubComCompleteDioid d
666
+ (D : comCompleteDioidType d) S (d' : Order.disp_t ) U of SubChoice D S U := {
667
667
semiring_closed_subproof : semiring_closed S;
668
668
opredSM_subproof : set_meet_closed S;
669
669
opredSJ_subproof : set_join_closed S;
@@ -746,7 +746,7 @@ Notation "[ 'SubChoice_isSubComCompleteDioid' 'of' U 'by' <: 'with' disp ]" :=
746
746
(* Testing subtype hierarchy
747
747
Section Test0.
748
748
749
- Variables (d : unit ) (T : choiceType) (S : {pred T}).
749
+ Variables (d : Order.disp_t ) (T : choiceType) (S : {pred T}).
750
750
751
751
Inductive B := mkB x & x \in S.
752
752
Definition vB u := let: mkB x _ := u in x.
@@ -759,7 +759,7 @@ End Test0.
759
759
Module Test1.
760
760
Section Test1.
761
761
762
- Variables (d : unit ) (D : completeDioidType d) (S : semiringClosed D).
762
+ Variables (d : Order.disp_t ) (D : completeDioidType d) (S : semiringClosed D).
763
763
Hypothesis SSJ : set_join_closed S.
764
764
765
765
HB.instance Definition _ := isJoinCompleteLatticeClosed.Build d D S SSJ.
@@ -773,7 +773,7 @@ End Test1.
773
773
Module Test2.
774
774
Section Test2.
775
775
776
- Variables (d : unit ) (D : completeDioidType d) (S : semiringClosed D).
776
+ Variables (d : Order.disp_t ) (D : completeDioidType d) (S : semiringClosed D).
777
777
Hypothesis SSM : set_meet_closed S.
778
778
Hypothesis SSJ : set_join_closed S.
779
779
@@ -787,7 +787,7 @@ End Test2.
787
787
Module Test3.
788
788
Section Test3.
789
789
790
- Variables (d : unit ) (D : comCompleteDioidType d) (S : semiringClosed D).
790
+ Variables (d : Order.disp_t ) (D : comCompleteDioidType d) (S : semiringClosed D).
791
791
Hypothesis SSJ : set_join_closed S.
792
792
793
793
HB.instance Definition _ := isJoinCompleteLatticeClosed.Build d D S SSJ.
0 commit comments