Skip to content

lunyang/ml-scratch-python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

ml-scratch-python

使用python3.X从头实现一些机器学习常用的算法。每个算法主要包含两部分:

a). 算法原理;

b). 代码实现及案例.

监督式学习

  • Adaboost
  • Decision Tree
  • Gradient Boosting
  • K Nearest Neighbors
  • Linear Discriminant Analysis
  • Linear Regression
  • Logistic Regression
  • Multi-class Linear Discriminant Analysis
  • Multilayer Perceptron
  • Naive Bayes
  • Perceptron
  • Random Forest
  • Ridge Regression
  • Support Vector Machine
  • XGBoost

非监督式学习

  • Apriori
  • DBSCAN
  • FP-Growth
  • Gaussian Mixture Model
  • K-Means
  • Partitioning Around Medoids
  • Principal Component Analysis

优化算法

  • 梯度下降

参考书籍:

  1. The Elements of Statistical Learning
  2. Pattern Recognition and Machine Learning
  3. 统计学习方法-李航
  4. 机器学习-周志华
  5. www.github.com

Note: 为什么不用英文写作?答:英文优秀的教程多如牛毛,中文的极度匮乏,故,为此作!

About

机器学习算法及python代码实现

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published