使用python3.X从头实现一些机器学习常用的算法。每个算法主要包含两部分:
a). 算法原理;
b). 代码实现及案例.
- Adaboost
- Decision Tree
- Gradient Boosting
- K Nearest Neighbors
- Linear Discriminant Analysis
- Linear Regression
- Logistic Regression
- Multi-class Linear Discriminant Analysis
- Multilayer Perceptron
- Naive Bayes
- Perceptron
- Random Forest
- Ridge Regression
- Support Vector Machine
- XGBoost
- Apriori
- DBSCAN
- FP-Growth
- Gaussian Mixture Model
- K-Means
- Partitioning Around Medoids
- Principal Component Analysis
- 梯度下降
参考书籍:
- The Elements of Statistical Learning
- Pattern Recognition and Machine Learning
- 统计学习方法-李航
- 机器学习-周志华
- www.github.com
Note: 为什么不用英文写作?答:英文优秀的教程多如牛毛,中文的极度匮乏,故,为此作!