Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix external variable initialization #1775

Open
wants to merge 10 commits into
base: master
Choose a base branch
from
20 changes: 17 additions & 3 deletions deepxde/data/pde.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,12 @@
from .. import backend as bkd
from .. import config
from ..backend import backend_name
from ..utils import get_num_args, run_if_all_none, mpi_scatter_from_rank0
from ..utils import (
get_num_args,
has_default_values,
run_if_all_none,
mpi_scatter_from_rank0,
)


class PDE(Data):
Expand Down Expand Up @@ -150,9 +155,18 @@ def losses(self, targets, outputs, loss_fn, inputs, model, aux=None):
elif get_num_args(self.pde) == 3:
if self.auxiliary_var_fn is not None:
f = self.pde(inputs, outputs_pde, model.net.auxiliary_vars)
elif backend_name == "jax" and len(aux) == 2:
elif backend_name == "jax":
# JAX inverse problem requires unknowns as the input.
f = self.pde(inputs, outputs_pde, unknowns=aux[1])
if len(aux) == 2:
# External trainable variables in aux[1] are used for unknowns
f = self.pde(inputs, outputs_pde, unknowns=aux[1])
elif len(aux) == 1 and has_default_values(self.pde)[-1]:
# No external trainable variables, default values are used for unknowns
f = self.pde(inputs, outputs_pde)
else:
raise ValueError(
"Default unknowns are required if no trainable variables are provided."
)
else:
raise ValueError("Auxiliary variable function not defined.")
if not isinstance(f, (list, tuple)):
Expand Down
8 changes: 4 additions & 4 deletions deepxde/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -401,10 +401,10 @@ def _compile_jax(self, lr, loss_fn, decay):
if self.params is None:
key = jax.random.PRNGKey(config.jax_random_seed)
self.net.params = self.net.init(key, self.data.test()[0])
external_trainable_variables_arr = [
var.value for var in self.external_trainable_variables
]
self.params = [self.net.params, external_trainable_variables_arr]
external_trainable_variables_val = [
var.value for var in self.external_trainable_variables
]
self.params = [self.net.params, external_trainable_variables_val]
# TODO: learning rate decay
self.opt = optimizers.get(self.opt_name, learning_rate=lr)
self.opt_state = self.opt.init(self.params)
Expand Down
11 changes: 11 additions & 0 deletions deepxde/utils/internal.py
Original file line number Diff line number Diff line change
Expand Up @@ -202,6 +202,17 @@ def get_num_args(func):
params = inspect.signature(func).parameters
return len(params) - ("self" in params)

def has_default_values(func):
"""Check if the given function has default values for its parameters.

Args:
func (function): The function to inspect.

Returns:
list: A list of boolean values indicating whether each parameter has a default value.
"""
params = inspect.signature(func).parameters.values()
return [param.default is not inspect.Parameter.empty for param in params]

def mpi_scatter_from_rank0(array, drop_last=True):
"""Scatter the given array into continuous subarrays of equal size from rank 0 to all ranks.
Expand Down
Loading